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Cutting out the middle man
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Time (series)is money

Benjamin Franklin



From production forecast to revenue forecast
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Negative prices

c : + T T
o Possible
i3] \/ \/ \ Realized
3
g}
o \-\_/
o | | | L | |
Dec 22 Dec 23 Dec 24 Dec 25 Dec 26 Dec 27 Dec 28 Dec 29
2016
) = 400 F I ]
£ 3 200
Q> 0
RS
o X
% é -200
= -400 =
Dec 22 Dec 23 Dec 24 Dec 25 Dec 26 Dec 27 Dec 28 Dec 29
2016
)
3
C
)
o
o
Dec 22 Dec 23 Dec 24 Dec 25 Dec 26 Dec 27 Dec 28 Dec 29
2016

6 Orsted



Corporate Power Purchase Agreements

Realised production

= = Baseload

Sells excess power at market price
Purchases additional power at market price

Production
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Time (series)is the wisest
counsellorof all

Pericles



The wind is dynamic

* Time series can capture the complexnature of

the wind

* Meet increasing demand for granularity in

business decisions and reporting

* Limited by levelofdetails in
* Modelling
 Available modelnputs
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Include more granularity

* Include additional physics
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Seasonality in measured power curve

Seasonal Variation in AEP

* Powerperformance measured
continuously
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* Density correction applied
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Handling curtailments
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Comparing predictions with realised production
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Comparing predictions with realised production

Understand details
ofmodel over-and
underestimation
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Seasonal model bias
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For illustration purposes only

Wake model production bias [%]

Comparing modelled and measured
waked power

Modeloverestimates powerin the
spring/summer

Modelunderestimates power in the
fall/winter

Understanding the seasonalpattern
can help improve the modeland reduce
the bias
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Time (series)waits for no one

Folklore



Production uncertainty (illustrative)
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Production uncertainty issues

Assessing model uncertainty

* Distribution of model errors

* Binned on power?

* Assessed foreach model component?

Finding the uncertainty at each time step (each turbine?)
* Accounting foruncertainty of inflow parameters
* Accounting formodeluncertainties

Aggregating the uncertainty across time series

* Accounting fortime series auto-correlation
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Other production time series issues to solve

Dynamic losses

* Site-specific power curve corrections
* Availabilities

* Electrical losses

Mesoscale
* Capturing full wind speed variability
* Correcting phase errors

Long -term time series

* Representativity
* Consistency
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All we have to do 1s
decide what to do
with the time (series)
that 1s given us

Gandalfthe Grey
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Seamless time series
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