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General context

 Cross-sectional activities within Wind Turbine Design division of DTU
 Aeroelasticity modelling for rotor design
 Involving several researchers and disciplines. 

 N. N. Sørensen, F. Zahle, C. Grinderslev (Computational Fluid Dynamics and Fluid Structure 
Interaction)

 T. Barlas (multi-body analysis and experiments)
 A. Li, G. Pirrung (engineering aerodynamic models)
 N. Ramos-Garcia (vortex methods)
 …

 Two-folded mission:
 Progress in the understanding of particular aeroelastic phenomena
 Improve current tools (high fidelity -> engineering models)
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Drivers

 The times we live in
Current and next generation of wind turbines
Rotor-upscaling: as a shifter of the role played by 

aeroelasticity
 The pursuit of innovative designs and concepts, examples: 

Low wind project 
Smart Tip project 

 Working together with industry, to answer some questions 
around numerical methods:
What could we do better?
What could we do faster?
What are we missing?

https://windenergy.dtu.dk/english/research/researc
h-projects/lowwind

https://windenergy.dtu.dk/english/research/research-projects/completed-projects/smart-tip
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DTU coupling: the Trojan Horse
 Combines different solvers of the department
 Unified aeroelasticity framework

Structural model

Aerodynamic models

Computational Fluid Dynamics (EllipSys3D): 
including actuator-line and rotor-resolved.

Engineering models (HAWC2 built-in): 
ranging from BEM to Near Wake

Vortex solver (MIRAS): ranging from lifting 
line to viscous/inviscid panel method.

Aeroelastic solver of HAWC2:
• Beam elements and multi-body 

formulation
• Solution through Newmark

algorithm, with 
predictor/corrector

DTU coupling



DTU Wind EnergyFriday, 08 October 2021 [Wind Turbine Design / Aero- and Fluid Dynamics ] 5/21

Focus of this presentation

 A phenomenon we are probably missing
 Vortex Induced Vibrations (VIV)

 Occurring at:
 Blades (standstill)
 Towers

 Could limit design and impose 
operational constraints

Experiment at University of Southampton [https://www.youtube.com/watch?v=UHFJPmtKqGo]
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About the numerical methods

 Vortex shedding is hard to model with engineering models
 Usually requires of the so-called Computational Fluid Dynamics (CFD) tools

 VIV are hard to model in a decoupled way:
 Usually requires to pass to a Fluid Structure Interaction (FSI) approach 
 Involving not only a CFD solver, but also a structural model

 For the DTU case, we follow a staggered approach:
 Existing CFD solver (EllipSys3D), in-house commercial software
 Existing FEM-multibody solver (HAWC2), in-house commercial software

Structural solver Fluid solver
Deflections

Loads
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Example of numerical model
 Model of the IEA 10MW blade [Horcas et al. (2020)]

 Body-fitted structured mesh of 12.6 millions of cells
 Hybrid Reynolds-averaged Navier Stokes (RANS) and large eddy simulation (LES)

 Typical CPU cost per simulation, modern cluster: 12-24 hours when using 300 processors  
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WT edgewise vibration in Standstill 

Horcas et. al (2020)

 In operation, it means:
 Installation/Yaw failure
 Blade braked at a certain 

angle. 

 The phenomenon seems to appear when:
 Incoming flow ≈ normal to blade
 AOA of sections around ±90 deg

 High inclination angles I (> 20 deg)
 Velocity component from tip to root. 

 Can occur at low-to-moderate wind speeds [10-20] m/s, exciting first edgewise
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Main challenges for blades VIV
 Complexity of the flow: requiring high fidelity (CPU cost)
 Variability of inflow conditions (and interference with other wakes).
 Dependence on blade geometry and structural properties.
 Hard to relate to traditional [circular cylinder] VIV research. But we anticipate: 

Ding et al. (2015)

Cross-section + Re for VIV Shear + tapering 
for VIV

Balasubramanian et. al (1998)
Miliou et. al (2007)

Curvature Inclination and tip effects

Ma et. al (2014)
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Effect of inclination angle
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Example of VIV animation
FLEXIBLESTIFF

Horcas et. al (2020)
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Sensitivities of WT blade VIV
 The region of VIV is very sensitive to the local blade geometry at the tip.

5% R

Source: Horcas et. al (2020)

 Installation of trailing edge flaps/spoilers may also help to prevent the phenomenon.

Source: Horcas et. al (2019)
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Tower vibrations

Vire et. al (2020)

 Some aspects regarding tower VIV may simplify the problem:
 Less complex geometry (closer to literature)
 More normal flow
 Experience on similar structures (e.g. chimneys)

 However:
 High Reynolds literature is still 

very scarce 
 Particularities of geometry and 

structure
 WT assembly topology and 

transportation

https://www.youtube.com/watch?v=rlpUhgfEZPU
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Conclusions

 Current and future WT designs could be subjected to:
 Blade VIV in standstill
 Tower VIV

 High fidelity models are needed
 Requiring of high CPU time
 Requiring of a muti-displicinary team to be successfully run

 So far, numerical simulations have predicted the phenomena
 Validation efforts are needed

 Industry and academia should work together to solve such a complex problem
 Through commercial agreements 
 Research-oriented projects
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End of presentation
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