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General context

 Cross-sectional activities within Wind Turbine Design division of DTU
 Aeroelasticity modelling for rotor design
 Involving several researchers and disciplines. 

 N. N. Sørensen, F. Zahle, C. Grinderslev (Computational Fluid Dynamics and Fluid Structure 
Interaction)

 T. Barlas (multi-body analysis and experiments)
 A. Li, G. Pirrung (engineering aerodynamic models)
 N. Ramos-Garcia (vortex methods)
 …

 Two-folded mission:
 Progress in the understanding of particular aeroelastic phenomena
 Improve current tools (high fidelity -> engineering models)
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Drivers

 The times we live in
Current and next generation of wind turbines
Rotor-upscaling: as a shifter of the role played by 

aeroelasticity
 The pursuit of innovative designs and concepts, examples: 

Low wind project 
Smart Tip project 

 Working together with industry, to answer some questions 
around numerical methods:
What could we do better?
What could we do faster?
What are we missing?

https://windenergy.dtu.dk/english/research/researc
h-projects/lowwind

https://windenergy.dtu.dk/english/research/research-projects/completed-projects/smart-tip
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DTU coupling: the Trojan Horse
 Combines different solvers of the department
 Unified aeroelasticity framework

Structural model

Aerodynamic models

Computational Fluid Dynamics (EllipSys3D): 
including actuator-line and rotor-resolved.

Engineering models (HAWC2 built-in): 
ranging from BEM to Near Wake

Vortex solver (MIRAS): ranging from lifting 
line to viscous/inviscid panel method.

Aeroelastic solver of HAWC2:
• Beam elements and multi-body 

formulation
• Solution through Newmark

algorithm, with 
predictor/corrector

DTU coupling
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Focus of this presentation

 A phenomenon we are probably missing
 Vortex Induced Vibrations (VIV)

 Occurring at:
 Blades (standstill)
 Towers

 Could limit design and impose 
operational constraints

Experiment at University of Southampton [https://www.youtube.com/watch?v=UHFJPmtKqGo]
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About the numerical methods

 Vortex shedding is hard to model with engineering models
 Usually requires of the so-called Computational Fluid Dynamics (CFD) tools

 VIV are hard to model in a decoupled way:
 Usually requires to pass to a Fluid Structure Interaction (FSI) approach 
 Involving not only a CFD solver, but also a structural model

 For the DTU case, we follow a staggered approach:
 Existing CFD solver (EllipSys3D), in-house commercial software
 Existing FEM-multibody solver (HAWC2), in-house commercial software

Structural solver Fluid solver
Deflections

Loads
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Example of numerical model
 Model of the IEA 10MW blade [Horcas et al. (2020)]

 Body-fitted structured mesh of 12.6 millions of cells
 Hybrid Reynolds-averaged Navier Stokes (RANS) and large eddy simulation (LES)

 Typical CPU cost per simulation, modern cluster: 12-24 hours when using 300 processors  
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WT edgewise vibration in Standstill 

Horcas et. al (2020)

 In operation, it means:
 Installation/Yaw failure
 Blade braked at a certain 

angle. 

 The phenomenon seems to appear when:
 Incoming flow ≈ normal to blade
 AOA of sections around ±90 deg

 High inclination angles I (> 20 deg)
 Velocity component from tip to root. 

 Can occur at low-to-moderate wind speeds [10-20] m/s, exciting first edgewise
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Main challenges for blades VIV
 Complexity of the flow: requiring high fidelity (CPU cost)
 Variability of inflow conditions (and interference with other wakes).
 Dependence on blade geometry and structural properties.
 Hard to relate to traditional [circular cylinder] VIV research. But we anticipate: 

Ding et al. (2015)

Cross-section + Re for VIV Shear + tapering 
for VIV

Balasubramanian et. al (1998)
Miliou et. al (2007)

Curvature Inclination and tip effects

Ma et. al (2014)
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Effect of inclination angle
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Example of VIV animation
FLEXIBLESTIFF

Horcas et. al (2020)
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Sensitivities of WT blade VIV
 The region of VIV is very sensitive to the local blade geometry at the tip.

5% R

Source: Horcas et. al (2020)

 Installation of trailing edge flaps/spoilers may also help to prevent the phenomenon.

Source: Horcas et. al (2019)
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Tower vibrations

Vire et. al (2020)

 Some aspects regarding tower VIV may simplify the problem:
 Less complex geometry (closer to literature)
 More normal flow
 Experience on similar structures (e.g. chimneys)

 However:
 High Reynolds literature is still 

very scarce 
 Particularities of geometry and 

structure
 WT assembly topology and 

transportation

https://www.youtube.com/watch?v=rlpUhgfEZPU
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Conclusions

 Current and future WT designs could be subjected to:
 Blade VIV in standstill
 Tower VIV

 High fidelity models are needed
 Requiring of high CPU time
 Requiring of a muti-displicinary team to be successfully run

 So far, numerical simulations have predicted the phenomena
 Validation efforts are needed

 Industry and academia should work together to solve such a complex problem
 Through commercial agreements 
 Research-oriented projects
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End of presentation
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