MEGAVIND

Strategic recommendations for research, development and demonstration of wind energy

A NEW MEGAVIND

Annual Research and Innovation Agenda 2021

Partnership in the Danish wind industry Supply Chain Test, verification and validation

A NEW MEGAVIND

EXECUTIVE COMMITTEE

a GE Renewable Energy business

COORDINATING COMMITTEE

Örsted LMWIND a GE Renewable Energy business

SIEMENS Gamesa

ØGLÆND SYSTEM

Vestas.

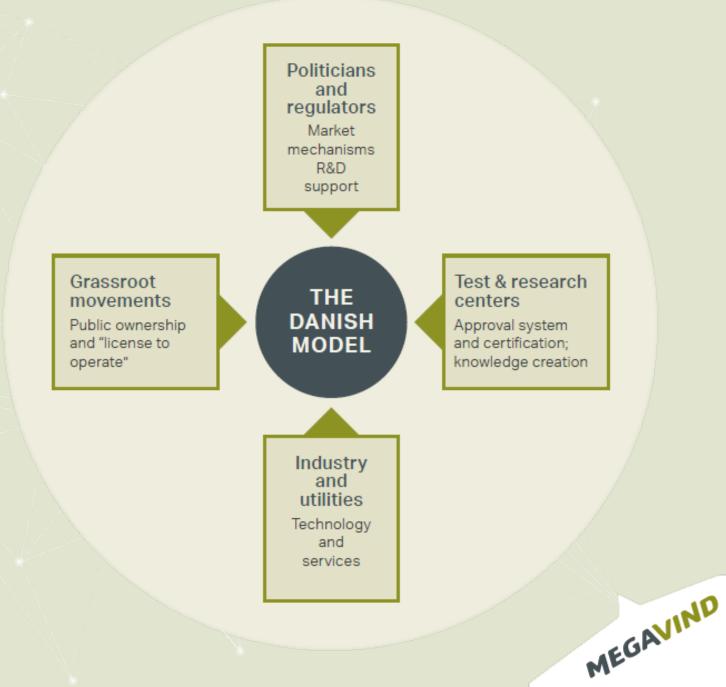
EXAMPLES OF MEGAVIND DELIVERABLES

DIALOGUE WITH STAKEHOLDERS WITHIN ENERGY

- Innovation Fund Denmark
- EUDP
- Energy Cluster Denmark
- Danish parliament
- WindEurope ETIPWind
- Green Lab Skive
- Etc.

ANNUAL RESEARCH AND INNOVATION AGENDA 2021

MEGATRENDS


Energy Systems Transformation towards zero carbon economy is influencing all aspects of society. From regulations to finance, consumer behavior to innovation investments, sector coupling and political frameworks.

Industrialisation 2030 through digitalisation, modularised manufacturing and innovations in the supply chain will drive competitiveness across the value chain from first design to decommissioning.

Globalisation of markets and companies. Companies, including subcontractors, must adapt business models to scale, to cater for a global supply chain and adapt to demands for local content. Financially responsible markets. Financial markets are altering the risk profile of wind power, and the potential for new business models raises issues about market design and regulations to balance risk and benefits for both investors and consumers.

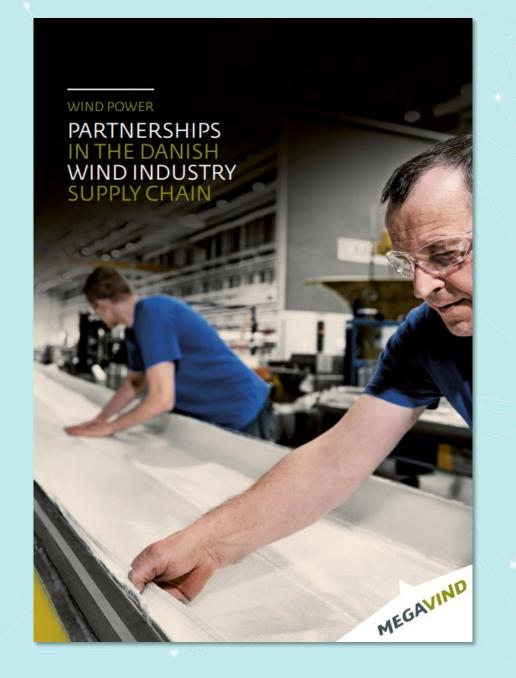
Social and environmental sustainability is a key megatrend for the wind energy and renewable technologies industries more generally. Recycling of turbine blades, sustainably circular wind farms and a new dialogue around the co-existence of renewable energy sources with ecosystems and communities are called for.

A PUBLIC-PRIVATE PARTNERSHIP FOR THE GREEN TRANSITION

R&D OPPORTUNITIES & CHALLENGES

Delivering gigawatts of wind power to the green transition Competences and framework for the green transition

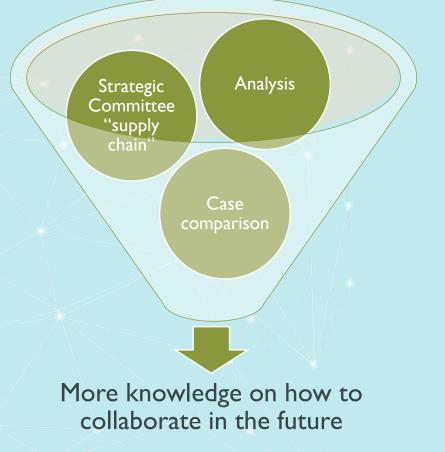
Upscaling


Upscaling and industrialisation to achieve cost reductions

System integration and sector coupling

Increased value of wind energy for companies and society through sector coupling

Sustainability


Technology's co-existence with people and nature

PARTNERSHIP IN THE DANISH WIND INDUSTRY SUPPLY CHAIN

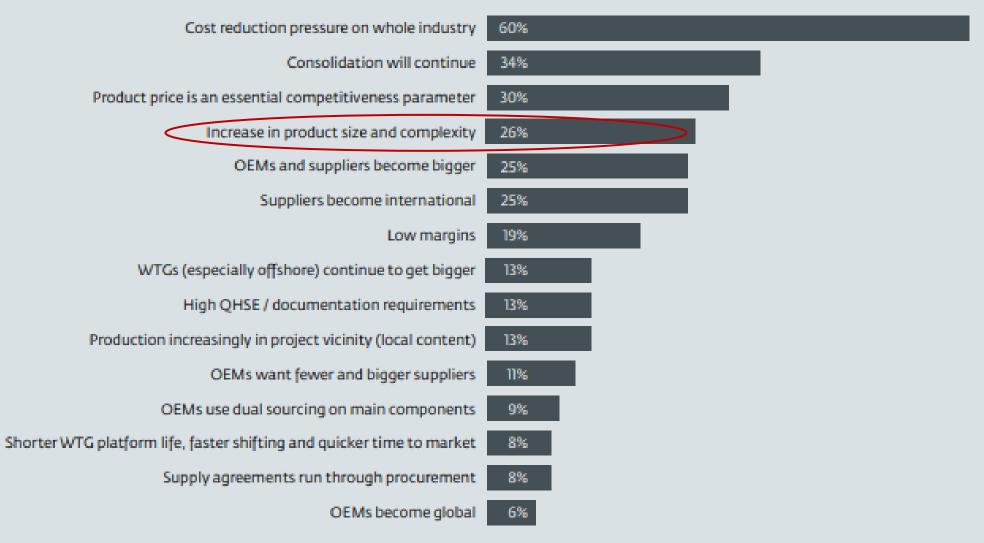
Strategic Committee – Partnership in the wind industry supply chain

Name	Place of employment	Note		
Claus Vilhelmsen	Øglænd System	ExCo-sponsor		
Torben Jørgensen	Fritz Schur Energy	Chairperson		
Ole Teglgaard	Resolux	Operational Group		
Lars Jensen	DAFA	Operational Group		
Erik Gammelgaard	East Metal	Operational Group		
Peter Møller	Weissenborn	Operational Group		
Mogens Nyborg Pedersen	Siemens Gamesa Renewable Energy	Operational Group		
Heidi Lindgaard-Brok	Vestas	Operational Group		
Tom Weiling	Ymer	Operational Group		

REPORT 2020 → ONGOING DIALOUGE IN 2021

21.04.15	21.05.10	21.05.25	21.06.14	21.06.29	21.09.13	21.09.27

Market trends – Future outlook

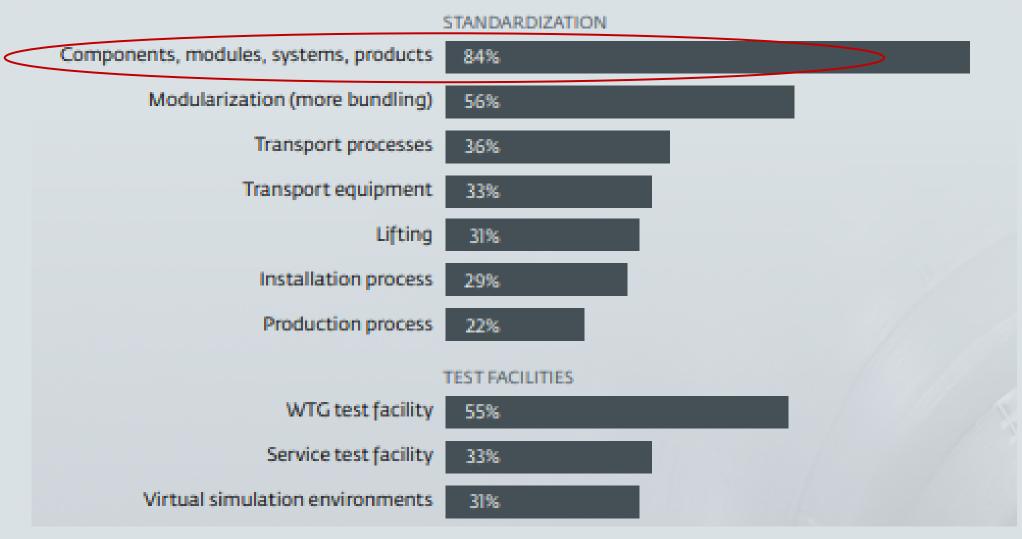

Short

Q3.2 How significant do you think each of the listed market trends will be within 3 years?

OEMs become global	65%	28%	4%	4%
WTG (especially offshore) continue to get bigger	65%	30%	295	4%
Suppliers become international	63%	30%	4%	4%
OEMs and suppliers become bigger	61%	31%	4%	4%
High QHSE / documentation requirements	52%	41%	6%	2%
OEMs want fewer and bigger suppliers	52%	41%	2%	6%
Cost reduction pressure on whole industry	50%	50%		
Consolidation will continue	50%	41%	4%	6%
Increase in product size and complexity	48%	44%	6%	2%
Production increasingly in project vicinity (local content)	46%	44%	2%	7%
Product price is an essential competitiveness parameter	43%	52%	6%	
Supply agreements run through procurement	43%	52%	296	4%
OEMs use dual sourcing on main components	35%	50%	6%	9%
Low margins	33%	65%		2%
ter WTG platform life, faster shifting and quicker time to market	33%	43%	17%	7%

More important Same importance as now Less important Don't know

What do you think will be the 3 most significant market trends within the next 3 years (important for partnerships) from the list above?



Q2.6 Which of the following partnership counterparty combinations have potential for value creation for companies in the wind sector?

/ERTICAL	
93%	>
47%	
56%	
36%	
HORIZONTAL	
69%	
45%	
31%	
OTHER	
58%	
29%	
2%	
	47% 56% 36% HORIZONTAL 69% 45% 31% OTHER 58% 29%

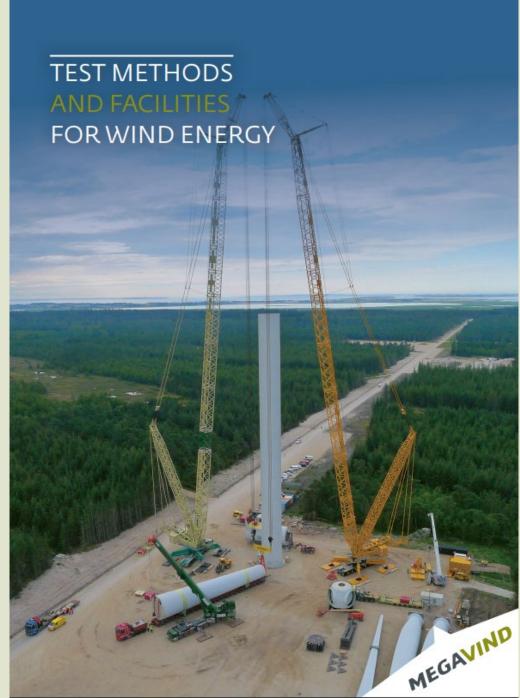
Which of the following opportunity areas do you believe are suitable to develop through partnerships?

Overview of recommendations

Extract of recommendations from the report

OEMs and suppliers to further transition from transactional customer-supplier mindset to partnership mindset

Extract of recommendations from the report


Suppliers engage in more horizontal cooperation around combining product portfolios and product aggregation

Learnings – so far:

• Long and ongoing dialog about the definitions of "Partnership"

• Case studies:

- I. Is there a common approach in the cases studied so far?
- 2. We need more cases to analyze
- Join our group be active

TEST **METHODS** AND **FACILITIES FOR** WIND ENERGY

Recommandations:

20 prototype test pads up to 400 meter

20 0-series test pads per year in wind farms

2015

HØVSØRE TEST PADS: 7 HEIGHT LIMITATION: 200 m

GRID INFRASTRUCTURE

 Plan to increase voltage levels from 10 kV to 33 kV.

Østerild TEST PADS: 9 HEIGHT LIMITATION: 5 pads up to 330 m, 4 pads up to 250 m.

GRID INFRASTRUCTURE

 Plan to increase voltage levels from 33 kV to 66 kV.

The test centres are owned and operated by DTU except for 4 pads at Østerild where Vestas Wind Systems and Siemens Gamesa Renewable Energy own and operate 2 pads each.

Component test infrastructures

- Full scale blade test facilities
- Blade segment test facilities
- Segmented blade test facilities
- Nacelle test facilities 33/66KV
- More focus on test and verification competances

FILTER INSTALLATIONS AT THE GRID EMULATOR PART OF LORC'S NACELLE TEST FACILITIES. PHOTO: LORC

NAME AND ADDRESS.

mesessem

TH

1

and a set

THANKYOU

MEGAVIND

MORE INFORMATION: <u>HTTPS://MEGAVIND.WINDDENMARK.DK/</u>

SECRETARIAT:

wind denmark