

Extreme acceleration events:

towards better understanding of wind-driven fatigue & ultimate loads

Mark Kelly Assoc. Prof., Danish Tech. University

5 Oct. 2021

Herning, DK

Motivation / justification

- Hiperwind: want extreme loads offshore
- what events drive extreme loads offshore? (flow / meteorology)
 - long-term statistics of load-driving events
 - allowance for different turbine sizes and control-systems

Motivation / justification

- Hiperwind: want extreme loads offshore
- what events drive extreme loads offshore? (flow / meteorology)
 - long-term statistics of load-driving events
 - allowance for different turbine sizes and control-systems

Previously:

- wind speed ramps results (OWA project, 2019, Kelly et al. 2021)
 - large features: highest variance >1km
 - most missed by 10-minute stats (need fast data)
 - persist throughout wind farm
 - large increase in thrust-based loads

background / previous results

- offshore wind ramps through farms
 - statistical climatology: $P\left(\Delta U, \Delta t, \frac{\Delta U}{\Delta t}, \frac{\Delta U}{\Delta z}\right)$
 - effect on loads, via coupled Mann-model+LES+Flex5
 - » flap-wise, tower-base (3% per 0.1 m/s²)

U_{before} <14, U_{after} <25m/s 14 count 12 12 10 10 Ubefore (m/s) 8 8 6 6 4 4 2 2 0 0.005 0.01 0.03 0.1 0.3 0.5 $\Delta U/\Delta t (m \cdot s^{-2})$

(Kelly et al. 2021)

Beyond ramps

- Find load-inducing flow perturbations
 - "fast data" (10Hz, 20Hz)
 - lighting mast: heights 100–160 m ($z > h_{IBL}$)
- Calculate accelerations
 - streamwise & crosswind/direction
 - in Fourier space (finite-difference not enough)
 - appropriate filtering
 - Low-pass: consider turbine response
 - » O(2) Butterworth

» $f_c = (30s)^{-1}, (10s)^{-1}, (3s)^{-1}$

(ramp detection had HP/LP $k_c^{-1} = 2$ km)

(filtered) wind accelerations

• filtering is essential

averaging (filter) time f_c^{1} [s]

now: a strong 10-minute period

OWA: all ramps

(filtered) wind accelerations

• filtering is essential

DTU

=

can we guess du/dt stats from 10-min. obs.?

streamwise (or horizontal):

DTU

significant a_u at sub-meso scales (<~3km)

- most common Max{a_u}: YES
 - a_u maxima follow σ_u
- extreme Max{*a_u*} : NO
 - extreme { a_u , σ_u } <u>not correlated</u> » (though at larger σ_u)

shown: filter O(2) BW, $f_c = 0.1$ Hz

- can "slide" plot up/down
 - per turbine response/filter

speed dependence of 10-min. max[ds/dt] ?

- most common $\dot{s}_{max} \propto U$
- extremes ~ independent of U
- many extremes cross typical V_{rated}
 - → larger loads!

DTU extreme events

u(*t*) at 100m, 160m for

- largest du/dt at z=100 m
 - per wind speed bin (1 m/s)
- LP-filter/response: 10 s

(red, green: u_{100} , u_{160})

(blue, gold: s₁₀₀, s₁₆₀)

300

200

100

600

500

400

extreme events

u(*t*) at 100m, 160m for

- largest du/dt at z=100 m
 - per wind speed bin (1 m/s)
- LP-filter/response: 10 s

(red, green: *u*₁₀₀, *u*₁₆₀)

(blue, gold: s₁₀₀, s₁₆₀)

extreme events

u(*t*) at 100m, 160m for

- largest du/dt at z=<u>160</u> m
 - per wind speed bin (1 m/s)
- LP-filter/response: 10 s

(red, green: u_{100} , u_{160})

(blue, gold: s₁₀₀, s₁₆₀)

5 October 2021 DTU Wind Energy

lateral / directional accelerations

- biggest lateral variability due to large-scale (>2km) motions
 - mostly frontal passages (different propagation angles)
 - check individual events against WRF, etc.

DTU

=

lateral / directional accelerations

- but <2km (HP) stats are better for common/fatigue-inducing</p>
- similar relation between $\{\dot{\phi}, \sigma_{\varphi}\}$ as for $\{\dot{u}, \sigma_{u}\}$

DTU

 $arphi_{100}(t)$, $arphi_{160}(t)$ for

- largest $d\varphi_{100}/dt$ (solid)
- also $d \varphi_{160}/dt$ (dashed)
 - per wind speed bin (1 m/s)
- LP-filter/response: 10 s

'anatomy' of an event

- accelerations:
 - (directional vs. horizontal

or lateral vs. streamwise component)

scale information...

- associated L_z ?
- correlation across rotor
- 'lag' in time

from Chougule et al., 2014

...scale info in practice

^{0.005}/e cup anemometers (not 3-d)

8):
$$L = \frac{\sigma_u}{\Delta U / \Delta z}$$

getting scale info in practice

• typically have cup anemometers (not 3-d)

- Kelly (2018):
$$L = \frac{\sigma_u}{\Delta U / \Delta z}$$

- what about extreme events?
 many extremes have "ambiguous" L
 - » event-scale
 - » background
 - → use integral time scales
 & Taylor's hyp.

direct: implicit scale info

- can we use typical stats?
- direct: $\Delta \dot{s} / \Delta z$

direct: implicit scale info

can we use typical stats?

→ yes (common/fatigue),
 IF we use only sub-meso part

• direct: $\Delta \dot{s} / \Delta z$

Summary & Outlook

- · Can exploit universal behavior to find accelerations
 - filter according to turbine response
- typical 10-min. data can give fatigue-inducing accelerations
 - most common ds/dt, d ϕ /dt $\,$: trends with $\sigma_{\rm s}$, S
 - sub-mesoscale statistics work best
- extremes require fast data (unavailable from 10-minute averages)
- big directional changes mostly due to large structures (cold fronts)
- mostly different extreme events, for streamwise and lateral
 - can use speed or streamwise *u* in these cases
- multiple characteristic scales for extreme events
 - 'background' turbulence & coherent event

Outlook / next:

• timeseries + Mann-model parameters for constrained turbulence → loads simulations

Acknowledgements

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 101006689

edf

DNV

Preliminary results

• lateral extremes uncorrelated with streamwise

edf

largest accelerations per 10-min:

- Gaussian ?
 - Skewness, kurtosis

direct: implicit scale info

- can we use typical stats? \rightarrow yes, IF we use only sub-meso part
- direct: $\Delta \dot{s} / \Delta z$

Site / data

- Høvsøre coastal masts
 - offshore sectors
 - -lighting mast: heights 100–160 m ($z > h_{IBL}$)
- "fast data" (10Hz, 20Hz)