(Old and) Novel concepts in land surface parameterisation with a special emphasis on forestry

Ebba Dellwik

Meso Vour Layer Power density Horizontal wir Wind spee Air density Surface layers Other Layers	Micro × rs ~ inds ~ nd climate mean () s ~ gend re-scale		https://map	.neweu Norway Sweden	ropear	nwindat	inland	 ♦ • •		
Custom Areas	~		C. C			-	Category	Proportion	WAsP	WRF
No area name	matches your query		Mark P			Mar Mar	Prood lanual forat	(%)	20 (11)	20 (11)
			Real States			Estonia	Coniferous forest	8.0 11.1	1.0	0.9
		The second se	CARTA				Mixed forest	4.2	1.1	0.5
	Z _o comes	from best	Denmark		Baltic Sea	In the	Natural grasslands	2.9	0.1	0.1
	practico/o	vnorionco				Latvia	Moors and heathland	2.4	0.12	0.12
		xperience,					Sclerophyllous vegetation	1.5	0.12	0.12
	or indirect	observations				Lithuania	Transitional woodland-shrub	4.1	0.4	0.12
	via wind p	orofiles	X-1 2773				Beaches – dunes – sands	0.1	0.01	0.01
							Bare rocks	1.3	0.05	0.01
	or tree he	ights	LAK &			Tere Cal	Sparsely vegetated areas	3.2	0.03	0.01
	increased in	Isnisea	AT Y SAN				Burnt areas	< 0.1	0.2	0.01
Neth			Netherlands		Poland		Glaciers and perpetual snow	0.2	0.005	0.001
			Germany			North Contraction	Inland marshes	0.2	0.05	0.001
							Peat bogs	1.6	0.03	0.001
		st and the	LA CARACTER	Czech		A State of	Salt marshes	0.1	0.02	0.001
				Republic	m		Salines	< 0.1	0.005	0.001
France			Switzerland	Austria Slovenia	Slovakia		Intertidal flats	0.2	0.001	0.001
					Hungary	m	Water courses	0.2	0.0002	0.0001
						S. C. ASK	Water bodies	1.8	0.0002	0.0001
						Romania	Coastal lagoons	0.1	0.0002	0.0001
200 km		A DOM	THE CALL	(CA) NO		and the second second	Estuaries	20.1	0.0002	0.0001
100 mi				larino Bos	nia and	Sz -		20.1	0.0002	0.0001
43.45292 27.1582	1000	ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:	WI01120C0	Horz	ogovina					

Dorenkämper et al (2020): https://doi.org/10.5194/gmd-13-5079-2020

Outline

DTU

- Why the forest roughness should be high:
 - New answers from the Single Tree Experiment
 - New concept of "direct observation"
- Why the roughness should not be sooo high:
 - Answers from the Ryningsnäs experiment
- Where are we today in terms of being able to predict microscale flow variability in forested areas using CFD, where the trees are vertically resolved as a distributed drag force?
 - Preliminary answers from Johan Arnqvist at Uppsala University
- Take home messages

"The Single Tree Experiment"

- One European oak tree
- 15 sonic anemometers
- Strain gauges on stem
- Surveillance camera
- Campaign with DTU WindScanner
- Tree structure models

Assessing the drag force on a tree $F = \frac{1}{2}C_d A \rho U^2$

Wind tunnel mount tree on calibrated drag force sensor

DTU Drag force from tree mounted sensor

Determining the drag force from the momentum deficit in the wake

Angelou, Mann, Dellwik(2021) doi:10.1017/jfm.2021.275

New concept: direct observation of land surface drag

Assessing the frontal area of a tree using a surveillance camera

$$F = \frac{1}{2} C_d \mathbf{A} \rho U^2$$

Results on Cd:

 $F = \frac{1}{2} C_d A \rho U^2$

Tree: ~0.8 Sphere: 0.2 - 0.4 Cylinder: 0.2 - 0.4 Wind turbine: ~ 0.5

Why the roughness over forested areas should be high?

Relative wind deficit in the wake of a tree

Because trees so efficiently remove momentum from the wind, strong mean wind gradients are created.

The high gradients are reflected with a high value of the roughness typically between 1.5 and 3 m.

Why the roughness should maybe not always be so high? Answers from the Ryningsnäs experiment

Vattenfall (2008-2009):

Well-instrumented tower

DTU and Uppsala University (2010-2011):

Six sonic anemometers Surface energy balance Campaigns with remote sensing instruments

Date DTU Arnqvist et al. 2015: <u>https://doi.org/10.1007/s10546-015-0016-x</u>

1. The roughness is stability dependent

Wind Statistics from a Forested Landscape

20

Fig. 9 Wind-speed profile in the western sector for different diabatic conditions, a unstable and neutral data, b stable data. Symbols of the measurements refer to the different stability conditions listed in Table 2. The results obtained with Monin–Obukhov similarity theory and using a constant $z_0 = 3$ m are shown by dashed lines. c Shows the roughness length obtained from matching the data to a surface-layer wind profile in stable conditions. The solid line is the bin average of the individual points with one standard deviation of the mean value indicated by bars. The dashed line is the Zilitinkevich (2009) formulation

2. Stable conditions may lead to very shallow boundary layers, leading to high gradients in turbulence

Date DTU Dörenkämper et al (2020): https://doi.org/10.5194/gmd-13-5079-2020

Outline

DTU

- Why the forest roughness should be high:
 - New answers from the Single Tree Experiment
 - New concept of "direct observation"
- Why the roughness should not be sooo high:
 - Answers from the Ryningsnäs experiment
- Where are we today in terms of being able to predict microscale flow variability in forested areas using CFD, where the trees are vertically resolved as a distributed drag force?
 - Preliminary answers from Johan Arnqvist at Uppsala University

SEMI-NEW CONCEPT

• Take home messages

Ongoing evaluation of flow models at Hornamossen¹ simulation of a daily cycle at 100m height

- Instrumentation: cups and sonics in 180 m tower, 6 sodars, 2 lidars
- Forested, mildly complex terrain
- Test case for different atmospheric stabilities from 72 hours of observations
- 10 participants from universities and industry

1. Contact Johan Arnqvist at Uppsala University: johan.arnqvist@geo.uu.se

Date DTU

Ongoing evaluation of flow models at Hornamossen¹

DTU

1. Contact Johan Arnqvist at Uppsala University: johan.arnqvist@geo.uu.se

Date DTU

Ongoing evaluation of flow models at Hornamossen¹

1. Contact Johan Arnqvist at Uppsala University: johan.arnqvist@geo.uu.se

Outline

- Why the forest roughness should be high:
 - New answers from the Single Tree Experiment.
- Why the roughness should not be sooo high:
 - Answers from the Ryningsnäs experiment
- Where are we today in terms of being able to predict microscale flow variability in forested areas using CFD where the trees are vertically resolved as a distributed drag force?
 - Preliminary answers from Johan Arnqvist at Uppsala University
- Take home messages: Keep measuring! Modellers, please keep working!

Thank you for listening!

ebde@dtu.dk