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What is Machine Learning?
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Machine learning - Wikipedia

https://en.wikipedia.org/wiki/Machine_learning ~

Machine learning (ML) is the scientific study of algorithms and statistical models that computer
systems use to effectively perform a specific task without using
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Learn Machine Learning from Stanford University. Machine learning is the science of getting
computers to act without being explicitly programmed. In the past

About - Syllabus - Reviews - Instructors

>

Machine learning

Field of study

More images

Machine learning is the scientific study of algorithms and statistical
models that computer systems use to effectively perform a specific task
without using explicit instructions, relying on patterns and inference
instead. Itis seen as a subset of artificial intelligence. Wikipedia
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Machine Learning is the
scientific study of algorithms
and statistical models that
computer systems use to
effectively perform a specific
task without using explicit
instructions, relying on patterns
and /nference instead. It is
seen as a subset of Artificial
Intelligence.
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What is Artificial Intelligence?

Google

Artificial intelligence Q

All Images Videos News Books More Setlings Tools

About 393.000.000 results (0,41 seconds)

Artificial intelligence (Al) is an area of computer
science that emphasizes the creation of intelligent
machines that work and react like humans. Some of
the activities computers with artificial intelligence
are designed for include: Speech recognition
Learning.

In computer science, Artificial

1! Intelligence, sometimes called

Artificial intelligence

What is Atificial Intelligence (Al)? - Definition from Techopedia Fleld of study M G Ch i n e | ntel | i q e nce, i S

\
futureofiife.org

https:/iwww.techopedia.com/definition/190/artificial-intelli -ai
In computer science, artificial intelligence. sometimes called machine

Apout this result Feedback intelligence, is intelligence demonstrated by machines, in contrast to the H t I I H :I t t I I
natural intelligence displayed by humans and other animals. Wikipedia I n e Ig ence e mo ns rq e y
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Artificial intelligence - Wikipedia
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In computer science, artificial intelligence (Al), sometimes called machine intelligence, is
intelligence demonstrated by machines, in contrast to the natural ..

Histery of artificial intelligence - Artificial intelligence in gove... - Social intelligence

Benefits & Rlsks ofArt\ﬁcwaI Intelligence - Future of Life Institute

o bl ket et e Machine Learning is the field of science

Why do we need research to ensure that artificial intelligence remains safe and beneficial? What
are the benefits and risks of artificial intelligence?

and engineering studying the process of
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- - - -
Artificial intelligence (Al) is an area of computer science that emphasizes the creation of m I m h t I I t
intelligent machines that work and react like humans. Some of the activities computers with q (I n q q c I n es I n e Iq e n ]

artificial intelligence are designed for include: Speech recognitien. Learning.
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Wind Energy

Impact of ML and Al in industry

Trends set to positively impact business growth up to 2022 |

Increasing adoption of new technology
Increasing availability of big data
Advances in maobile internet

Advances in artificial intelligence

Advances in cloud technology

Shifts in national economic growth

Expansion of affluence in developing economies
Expansion of education

Advances in new energy supplies and technologies
Expansion of the middle classes

Source: Future of Jobs Survey 2018, World Economic Forum.

World Economic Forum: http://reports.weforum.org/future-of-jobs-2018/
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Impact of ML and Al in industry

Figure 2: Technologies by proportion of companies likely to adopt them by 2022 (projected)
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World-wide: 85% BD, /5% ML
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89% BD, 75% ML
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Attracting more researchers to work on ML & Al

New research results

> Exponential growth of papers focusing on and using ML, its subfields and
connected topics

Number of Al papers on Scopus by subcategory (1998—2017) Number of Al papers on arXiv by subcategory (2010—2017)
Source: Elsevier Source: arXiv
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Al Index 2018: http://cdn.aiindex.orqg/2018/Al%20Index%202018%20Annual%20Report.pdf
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Need for more ML & Al scientists-engineers

Job openings for Al scientists/engineers
> Machine Learning is an essential skill

> Deep Learning is the most active topic

Job openings by Al skills required (2015 — 2017) growthraf job openings by Al skills required (2015 — 2017)
Source: Monster.com ource: Monster.com
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Al Index 2018: http://cdn.aiindex.orqg/2018/Al%20Index%202018%20Annual%20Report.pdf
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The current Machine Learning paradigm

Deep Learning

> Machine Learning architectures which are formed by multiple hierarchical
transformation/mapping levels, the parameters of which are jointly optimized to
achieve a goal expressed in the form of an optimization function defined on the
training data (and usually annotations of it)

> During the last seven years, they have achieved impressive performance in a wide
range of applications.

Layer 1

What DL model to use? Many decisions to make:

- Topology, type of neurons, optimization tricks, etc.

Some design patterns become standard, but not
necessarily optimal for a new problem
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Deep Learning
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Applications of ML/DL

Problems which attracted public attention:
> General scene and object detection/recognition

NSF-CVDI 2015

M. Waris, A. Tosifidis and M. Gabbouj, “CNN-based Edge Filtering for Object Proposals”, Neurocomputing, 2017


http://nsfcvdi.org/wordpress/cvdi_personnel/alexandros-iosifidis/
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Applications of ML/DL

Problems which didn’t receive much public attention yet:
> Face analysis

MOBISERV FP7

A. Tosifidis and M. Gabbouj, “Class-Specific Kernel Discriminant Analysis revisited: further analysis and extensions”,
IEEE Transactions on Cybernetics, 2017

A. losifidis and M. Gabbouj, "Scaling up Class-Specific Kernel Discriminant Analysis for large-scale Face
Verification"”, IEEE Transactions on Information Forensics and Security, 2016

A. losifidis, A. Tefas and I. Pitas, “Class-specific Reference Discriminant Analysis with application in Human
Behavior Analysis”, IEEE Transactions on Human-Machine Systems, 2015


http://cordis.europa.eu/project/rcn/93537_en.html
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Applications of ML/DL

Problems which didn’t receive much public attention yet:

> Face analysis
> Action recognition MOBISERV FP7

F. Patrona, A. losifidis, A. Tefas, N. Nikolaidis and 1. Pitas, “Visual Voice Activity Detection in the Wild”,

IEEE Transactions on Multimedia, 2016
A. losifidis, A. Tefas and I. Pitas, "Distance-based Human Action Recognition using optimized class representations”,

Neurocomputing, 2015
A. losifidis, A. Tefas and I. Pitas, "View-invariant action recognition based on Artificial Neural Networks", IEEE

Transactions on Neural Networks and Learning Systems, 2012


http://cordis.europa.eu/project/rcn/93537_en.html

Wind Energy

AARHUS

PIT Denmark
NP  UNIVERSITET Alexandros losifidis 01/10/2019

Applications of ML/DL

Problems which didn’t receive much public attention yet:
> Face analysis
> Action recognition

> Action recognition in smart home environments
MOBISERV FP7

A. losifidis, E. Marami, A. Tefas, I. Pitas and K. Lyroudia, “The MOBISERV-AIIA Eating and Drinking multi-view
database for vision-based assisted living”, J-IHMSP, 2015.


http://cordis.europa.eu/project/rcn/93537_en.html
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Applications of ML/DL

Problems which didn’t receive much public attention yet:
> Face analysis
> Action recognition

> Historic visual data analysis

(a) A close-up photo (b) A mid-range photo (¢) An overview photo

Figure 2. Examples of photos taken from different distance ranges and the corresponding bounding boxes

K. Chumachenko, A. Mannisto, A. losifidis and J. Raitoharju, "Machine Learning based Analysis of Finnish
World War Il Photographers”, 2019
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Time-series analysis

Proposal of new types of DL models
> Exploiting properties of the input dataq, e.qg. time-series data

Temporal Attention-augmented Bilinear Network

| Temporal Logistic Neural Bag-of-Features
(=) with Long- and Short-Term memory

TLo-NBoF Layer

Transformed Feature Long Tom Lo NEoF

Vectors

Input Feature Vectors

Xij

Fully Connected

) g % Layers
(long)
s
1
s \
P % O
7
0

Time series

AN

SoF
(shart)
g SJ

D.T. Tran, A. losifidis, J. Kanniainen and M. Gabbouj, “Temporal Attention augmented Bilinear Network for Financial
Time-Series Data Analysis”, IEEE Transactions on Neural Networks and Learning Systems, 2019

N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj and A. losifidis, “Temporal Bag-of-Features Learning for Predicting
Mid Price Movements using High Frequency Limit Order Book Data”, IEEE Transactions on Emerging Topics in
Computational Intelligence, 2019

Pre-processin
P 9 Stationary

\ Neural Feature  |¢
7 Extraction \

Down
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Time-series analysis

Proposal of new types of data registration for DL models
> Automatic data-driven based pre-processing of data

Adaptive Input Normalization of DL models for time-series data

Deep Adaptive Input Normalization Layer

Xi X0 = x; — W,s, X, = x Osigm(Wgs; +by) ™,
b+ —> ——— —>»
N —> — —>»
W, Wi. by
| — —> — x —> — (
Adaptive i Adaptive S . Deep Neural
— ’[ Shifting > * scaling I — "1 Network
| — ‘Tf —>» — T —> —
I Su —> —— S —>»
' P I —> — T B —
Input Normalized
F Summary Summary Time-series
Time-series PRl mor] Aggergator
.-""-{.ff

N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj and A. losifidis, “Deep Adaptive Input Normalization for Time Series
Forecasting”, IEEE Transactions on Neural Networks and Learning Systems, 2019
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Recommendation systems

Safety/hazard Assessment

Vulnerable

- TR —
g " O O [9 : 0
Bala "a QP> NN
[ o [ n : : $ 0]
[ ©) ©) OJ \! ©)
HE m — ) s H 9
X1 71 [ Ranking loss 1
= [ —_ — 5 |
EuEEussly '6' '6 O ; 0O TABLE 1: Average Prediction Results (%) on 3 University
OLLIOLLIO i @ O B Ranking Datasets in 2015.
E g >\ . C R |
E - e m 3 : > E > "@ Methods Kendal's tau  Accuracy
E = 9 9 Q i @) Best Single View 65.38 -
72 ! — Ranking loss 2 Feature Concat 35.10 -
Xz H c
n - - _ - . ;:il?(?ng oss LMvCCA [_] 86.04 94.49
| | nE | O @) '6" n LMvMDA [5] 87.00 9497
& | ol 1ol 1o MvDA [¢] 85.81 9434
s H eI HP>(0) = SmVR [4] 80.75 -
0| ol 1ol 1O S DMvCCA [7] 70.07 93.20
Balads — Y 5 & _ DMvMDA [5] 70.81 9475
v Ranking loss V
Xv MvCCAE (ours) 75.94 94.01
F H ¢ MvMDAE (ours) 81.04 9485
DMvVDR (ours) 89.28 95.30

G. Cao, A. losifidis, M. Gabbouj, V. Raghavan and R. Gottumukkala, “Deep Multi-view Learning to Rank”, IEEE

Transactions on Knowledge and Data Engineering, 2019
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Multi-view/modal Data Analysis

Generalized Multi-view Embedding

Image Space 1
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Linear or Non-Linear Subspace Learning

G. Cao, A. losifidis, K. Chen and M. Gabbouj, "Generalized Multi-view Embedding for Visual Recognition and Cross
-modal Retrieval”, IEEE Transactions on Cybernetics, 2018
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Multi-view/modal Data analysis

Image and Text (12T and T2I) Retrieval

Image Query

£

G. Cao, A. losifidis, K. Chen and M. Gabbouj, "Generalized Multi-view Embedding for Visual Recognition and Cross

Text Query

1. A very big building with many windows and a clock on it.
2. A very old tall building with a large clock tower sticking out of it.
3. The clock tower stands high above the city.

4. A clock that is on the side of a large building.
5. The bridge is in front of a huge building with a clock tower in the middle of it.

Precision: 53.33%

(a) Query by original image feature

Precision: 86.67% Precision; 100%

(b) Query by projected image feature (c) Query by text

Image Query

Text Query

1. An open laptop sits on a desk in front of a window.

2. An Apple laptop sitting on a wooden desk.

3. An Apple laptop sitting on a wooden desk in an office.
4. An Apple laptop on a desk in an office.

5. A desk with a laptop sitting on top of it.

Precision: 60.00%

(a) Query by original image feature

V' B,

 Precision: 66.67%

Precision: 86.67%

(b) Query by projected image feature (¢) Query by text

-modal Retrieval”, IEEE Transactions on Cybernetics, 2018
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NSF-CVDI 2016
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Is DL easy to train and deploy?

Challenges
> High dependence on large and pre-processed (annotated) data sets
> Enormous number of computations

> long training and evaluation times

> need for GPU powered computers

> Need for human expertise to define the most suitable type of DL model for the
specific problem

> Highly specialized solutions which cannot be easily employed in other problems
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Neural networks in Computer/Robotic Vision

Architectures 2014

“Very deep CNNs”
Simonyan & Zisserman

Diminishing returns
after ~16 layers

Today there exist network
architectures with more than
100 convolution layers!

1999 - 2012 .
 Classiter For example Residual
Encoding, pooling Networks with 1000 layers in:
o He, Kaiming, et al. "Identity mappings in

Image

3
N
sEPEPEEL TN ENE =
nNo

deep residual networks." Proc. European

Deep Very deep
Conference on Computer Vision. 2016
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The role of Big Data in ML and CV solutions

Shallow vs. Deep Learning models

Error

Small model N ———

Big model

———— rain o

= == TJest

Small model is betterl Big model is better  # Samples
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Automatic network design

Heterogeneous Multilayer

Data-driven DL model learning Generalized Operational Perceptron
Layers and neurons selection

> Automatic training of the structure and
the parameters of the DL model

> Data having the form of vectors and
tensors
Progressive Operational Perceptrons

PF in GOPmin(1) PF in GOPmin(2) PF in GOPmIn(3)
(min. MSE (min. MSE = 0.02) (min. MSE = 107)

h}
if

o 0!
,@. )@
yof 0, Operators Pool
Yot o}

S. Kiranyaz, T. Ince, A. losifidis and M. Gabbouj, “Progressive Operational Preceptrons”, Neurocomputing, 2017
D.T. Tran, S. Kiranyaz, M. Gabbouj and A. losifidis, “Heterogeneous Multilayer Generalized Operational
Perceptron”, IEEE Transactions on Neural Networks and Learning Systems, 2019
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Acceleration of DL models

Exploitation of ideas from statistical Machine Learning for increasing
efficiency of DL models

jis 2 04 ) 128 1024
: . 3 ) i : 256
s A |3 — : 64
. :{ J IJ\ 3 ‘ I'A " : 5
2| g b [:: R ; Dense | |Dense | | Dense | | Dense
I 17, O O O O S —l——{—U
1 1. e 12 fas 12 et 1 Y
Input Conv 1 Cony 2 Conv 3
Xi
.-'f‘ e
4 wa(r)” wi(r)"
A y ——
. ) Wz(T)T )
— %3 = X1 =) X2t ) ) &
_"- Ixdx1 Ix1x1
dxdxC d X d x 1

D.T. Thanh, A. losifidis and M. Gabbouj, “Improving Efficiency in Convolutional Neural Network with Multilinear
Filters”, Neural Networks, 2018
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Efficient DL models

When computations need to be done on a server (not on the robotic
platform) efficient end-to-end compression, transmission and recognition
can be applied

Task-specific o
MNeural MNetwork
Analog -, Tensor
Signal + Feature |
cs z Feamure Synthesis
B, B B.....0y
> -' —
Measurements \

D.T. Tran, M. Yamac, A. Degerli, M. Gabbouj and A. losifidis, “Multilinear Compressive Learning”,
arXiv: 1905.07481, 2019
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Data-Driven Analytics group at ENG

More information can be found in our websites:
> Work in several topics of Machine Learning
> Implementations in several applications, including

> human behavior analysis

> financial data analysis
> Computer Vision for Bioscience

> au.dk/en/ai@eng.au.dk sites.qoogle.com/view/iosifidis
Alexandros losifidis . — o=
- A]ex:ndros J m m l

Iosifidis

Publications

= Journal articles

= Conference papers

Y o

Codes and datasets
« Codes

« Datasets

If you are unable to find any of my papers, you are welcome to contact me.
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Data-Driven Analytics group at ENG

Current funding

> OpenDR:
> H2020-RIA project (2020-2022) targeting to create the first Deep Learning toolkit for
efficient solutions of Robotic problems (including visual data and sensor time-se
> DISPA:
> IRFD project (2019-2022) targeting at financial market time-series analysis for inter-stock
predictive analytics
> Interpretable Deep Learning:
> DIGIT project (2019-2022) targeting the proposal of new interpretable Deep Learning
method
> Industrial PhD:
> Project (2019-2023) targeting the proposal of new Deep Learning methods for weather
forecasting
> Efficient DL for UAVs:
> AU-ST project (2018-2022) targeting the proposal of new efficient Deep Learning
methods for Computer Vision in drones
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Aarhus University Centre for
Digitalisation, Big Data and Data Analytics

Collaboration between the Departments
> Engineering

> Computer Science

> Mathematics

RESEARCH

Interdisciplinary thematic
centres

DIGIT is one of Aarhus University's
strategic research centres working on

developing solutions to the World's
Big Data Analysis Science and Engineering of Smart Products with Focus on Grand Challenges.

Machine Intelligence Cyber-Physical Systems

http://digit.au.dk/

Blockehain Cyber-Security Internet of Things Digital Business Development

>


http://digit.au.dk/
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Thank you for your attention!



