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AI and Big Data – the latest news
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▪𝑎 = 𝐹/𝑚

3



DNV GL © 01 October 2019

AI Physicist!
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Turbine interaction loss predictions with high-fidelity flow modelling

▪ Directly simulate the two-way coupling between wind farm and atmosphere

▪ Includes oft-neglected first-order influences such as atmospheric stability (e.g. gravity waves)

▪ Captures both wake and blockage effects

▪ Slow

▪ Expensive

▪ Cannot realistically optimize a turbine layout
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Advantages

Disadvantages



DNV GL © 01 October 2019

Another option for predicting turbine interaction loss
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Objective: Combine the accuracy benefits of a 

high-fidelity flow model with the speed of a 

reduced-order model 

Idea: Train a machine learning model to 

estimate what the high-fidelity flow model 

would predict at each turbine location

Efficiency pattern for WD = 200°
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Challenge
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Neutral network: 

Fixed number of inputs 

in a fixed order

Wind farms: Variable 

number of turbines with no 

clear order
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Solution: Graph Networks

8

Battaglia PW, et al. “Relational inductive biases, deep learning, and graph networks” 

https://arxiv.org/pdf/1806.01261.pdf

Allows for different numbers of inputs

Order invariant

Well-suited to learning physical interactions between objects

Graph Networks as Learnable Physics Engines for Inference and Control.
Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller, Raia Hadsell, Peter Battaglia

https://arxiv.org/pdf/1806.01261.pdf
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Current implementation – We are starting simple
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▪ Graph networks comprising MLPs constructed using

▪ Inputs

– Turbine coordinates

– Rotor diameter

– Ct at plateau of the Ct curve

– Wind direction

▪ Output / Prediction

– U / UI for each turbine

U = Effective wind speed (i.e. the wind speed 

used to look up power in the power curve).

The “I” subscript denotes the situation where 

the turbine is operating in isolation
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Data
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▪ 41 different wind farms

▪ Simulated with steady-state RANS CFD

–Neutral boundary layer with capping inversion and stably stratified free atmosphere

– Below-rated wind speeds

– Varying wind directions

– 182 simulation in total (    106)

▪ Trained on 145 simulations

▪ Tested against 39 simulations

106
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Compare ML prediction with CFD result at Horns Rev 1, wind direction = 289°
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Horns Rev 1 CFD results are included in the training set, but not for this wind direction

Pattern is well-captured, but with a small downward bias of 0.6% 𝑈

𝑈𝐼RANS CFD (Target) ML model (Prediction)
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Compare ML prediction with CFD result at a generic wind farm with 60 turbines, 
6D spacing, and wind direction = 181°
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This wind farm is not included at all in the training set

Pattern is well-captured, but with a slight downward bias of 0.2% 𝑈

𝑈𝐼RANS CFD (Target) ML model (Prediction)
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Still a ways to go
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▪ Can we predict the variation with wind speed?

▪ Can we predict the sensitivity to atmospheric stability?

▪ Can we handle mixed turbine types?

▪ TBD
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Goals
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▪Low end: A tool that can interpolate between CFD results at a given wind 

farm (e.g. translate simulation results for 6 wind directions into results 

for 180 directions)

– Benefit: Reduces the number of high-fidelity simulations needed to conduct a 

complete turbine interaction analysis of a wind farm.

▪High end: A machine learning model reliable enough that it can be used 

on wind farms that are not part of the training set

– Benefits: Turbine interaction loss predictions high-fidelity models accuracy and 

engineering model speed. Wind farm layouts could then be optimized considering both 

wakes and blockage
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Summary

▪ High-fidelity CFD takes a long time

▪ Trend in AI to “learn physics”

▪ New model developed that “learns” CFD

▪ Some very promising first results

▪ Much more to follow!
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DISCLAIMER

This presentation shows models and results that are the product of professional 

research only. 

Techniques and methods demonstrated here are not in commercial use by DNV GL.

The work presented within this presentsion represents research in progress. As such, 

any findings are preliminary and subject to change.
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Backup
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A little more insight into the statistical accuracy
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▪ The red line indicates that the mean absolute bias (i.e. mean error over a wind farm) 

across all the test predictions is a little over 0.1%

▪ The worst wind farm bias was 1.5%


