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AI Physicist!
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Turbine interaction loss predictions with high-fidelity flow modelling

Advantages

= Directly simulate the two-way coupling between wind farm and atmosphere

= Includes oft-neglected first-order influences such as atmospheric stability (e.g. gravity waves)
0

= Captures both wake and blockage effects

Disadvantages

= Slow
= Expensive

= Cannot realistically optimize a turbine layout
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Another option for predicting turbine interaction loss

Objective: Combine the accuracy benéefits of a
high-fidelity flow model with the speed of a

reduced-order model _____ Z e

0.75 0.8 0.85 0.9 0.95 1

Efficiency pattern for WD = 200°

Idea: Train a machine learning model to
estimate what the high-fidelity flow model
would predict at each turbine location
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Challenge

Wind farms: Variable
Neutral network: . .
_ _ number of turbines with no
Fixed number of inputs
_ _ clear order
in a fixed order
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Solution: Graph Networks

Pendulum Cartpole Acrobot Swimmer6
2

1 Ee

(a) Edge update (b) Node update (c¢) Global update Cheetah Walker2d JACO

Allows for different numbers of inputs

Graph Networks as Learnable Physics Engines for Inference and Control.

O rd e r i nva ri a n t Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller, Raia Hadsell, Peter Be

Well-suited to learning physical interactions between objects

Battaglia PW, et al. “Relational inductive biases, deep learning, and graph networks”
https://arxiv.org/pdf/1806.01261.pdf
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https://arxiv.org/pdf/1806.01261.pdf

Current implementation — We are starting simple

= Graph networks comprising MLPs constructed using O Py-l_o rCh

= Inputs
— Turbine coordinates
— Rotor diameter
— C; at plateau of the C; curve
— Wind direction

= Qutput / Prediction
— U / U, for each turbine

U = Effective wind speed (i.e. the wind speed
used to look up power in the power curve).

The “I” subscript denotes the situation where
the turbine is operating in isolation
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Data

= 41 different wind farms 106

= Simulated with steady-state RANS CFD
— Neutral boundary layer with capping inversion and stably stratified free atmosphere
— Below-rated wind speeds

1071 4 —— ~
train {last=0.00004)
test (last=0.0000%)

—Varying wind directions

— 182 simulation in total (— 10°)
1077 5

loss

= Trained on 145 simulations 10-7

= Tested against 39 simulations 10-4 -

0 2% s0 75 100 125 150 175 200

epoch
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Still a ways to go

= Can we predict the variation with wind speed?

= Can we predict the sensitivity to atmospheric stability?

= Can we handle mixed turbine types?

= TBD
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Goals

=/ ow end: A tool that can interpolate between CFD results at a given wind
farm (e.g. translate simulation results for 6 wind directions into results
for 180 directions)

— Benefit: Reduces the number of high-fidelity simulations needed to conduct a
complete turbine interaction analysis of a wind farm.

=High end: A machine learning model reliable enough that it can be used
on wind farms that are not part of the training set

— Benefits: Turbine interaction loss predictions high-fidelity models accuracy and

engineering model speed. Wind farm layouts could then be optimized considering both
wakes and blockage
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Summary

= High-fidelity CFD takes a long time

= Trend in Al to “learn physics”

= New model developed that “learns” CFD
= Some very promising first results

= Much more to follow!
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DISCLAIMER

Th a n k yo u This presentation shows models and results that are the product of professional

research only.

Techniques and methods demonstrated here are not in commercial use by DNV GL.

The work presented within this presentsion represents research in progress. As such,
any findings are preliminary and subject to change.

Lars.Landberg@dnvgl.com

www.dnvgl.com

SAFER, SMARTER, GREENER
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Backup
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A little more insight into the statistical accuracy

= The red line indicates that the mean absolute bias (i.e. mean error over a wind farm)
across all the test predictions is a little over 0.1%

- train (last=0.00004)

= The worst wind farm bias was 1.5% B et
1077 - f = max_MSE, test (last=0.00030)
] - Dbias, test (last=0.00110)
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