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Outline

• Blockage effects & and wakes from windfarms

• AI & wakes – how to predict 1 min average power from a windfarm

• Wakes & Uncertainty

• Cool measurments from a wake

• Control of wind farms 
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Some words on 
validation of wake 
models 
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Wakes 
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The challenging area
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What do we need to validate

• Velocity and turbulence in the wake is important for estimating Wakeloss and loads for the 

turbine within the wake.

• CT – the thrust coefficient from the turbin, Inflow conditions U (speed) and Turbulence 

(and stability) 

• Wind farm data in form of power or loads 

• All of above needs to be there to validate the wake models 
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Wake modelling offshore in CREYAP (EWEA, 2015)
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• Wake models disagree inside wind farms: 

uncertainty (CV)  WTG wake loss

• Wakes represent a significant wind farm loss

– Onshore: 6-10%

– Offshore: 8-14%

• Modelled with separate wake models

– Model name and specification important

– Model configuration must be known too!

• WF wake modelling uncertainty (CV)

– Onshore: 13-18%

– Offshore: 16-22%

– Uncertainty  WF wake loss

• Classic models seem to provide realistic results for 

Barrow Offshore Wind Farm
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Single Wake – an automate comparison in Pywake

in our optimization frame work TOPFARM
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Windfarm efficiency 
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Blockage effects 
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Induction zone
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© Siemens Gamesa Renewables
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© Siemens Gamesa Renewables

CFD validation with wind scanner
The lidar measurements
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New stochastic CFD validation method 

14

𝒙

𝒚

Typical deterministic approach

New stochastic approach
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Wind farm power change free from wakes

15



DTU Wind Energy26 September 2019

Global blockage effect (GBE)
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• Primary: Induction zones of turbines in wind farms add up

• Secondary: Turbines act together as obstruction and divert flow around wind farms

• Estimated loss in AEP due to GBE: 1-3%

DTU model solutions: 

– EllipSys3D, RAND-CFD with actuator disks

– Coupled FUGA 

– Simple wake model + simple induction zone model

James Bleeg et al. (2018)
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AI & wakes
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10/7/2019
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• Gaussian Deficit →First Time in 1Hz SCADA

𝑘∗ = 𝑎 𝑇𝐼 + 𝑏

𝑎 = 0.3837
𝑏 = 0.003678

Short-term Wake Modelling
Gaussian Deficit Model 

Majid Bastankhah and Fernando Port ́e-Agel. A new analytical model for wind-turbine wakes. Renewable Energy, 70:116–123, 2014

Mahdi Abkar and Fernando Porte-Agel.  Influence of atmospheric stability on wind-turbine wakes:  A large-eddy simulation study. Physics of Fluids, 27(3):1–20, 2015
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• Gaussian Deficit →Bayesian Re-calibration

𝑘∗ = 𝑎 𝑇𝐼 + 𝑏

𝑎 = 0.3837
𝑏 = 0.003678

Short-term Wake Modelling
Re-calibration of Gaussian Deficit Model 
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10/7/2019
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• Machine Learning Platform – TensorFlow

– With Keras wrapper in Python

– Fast & easy to apply

• The deep learning algorithm – LSTM

– Long Short-term Memory

– Special building unit for RNN

– Shown to perform faster & better for highly

fluctuating time series

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

• The inputs from the upstream turbines

– Defined at every minute (WD dependent)

– WD, Ueff, std(Ueff), ct + uncertainties

– Data fed for the previous 1-hour

• Time window of 1-hour shifted forward at 

every minute

Input interval
Output 
interval

Short-term Wake Modelling
Machine Learning for short-term wakes

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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• Machine Learning Platform – TensorFlow

• The inputs from the upstream turbines

– Defined at every minute (WD dependent)

– WD, Ueff, std(Ueff), ct + uncertainties

– Data fed for the previous 1-hour

• Time window of 1-hour shifted forward at every

minute

• The output 

– Ueff at the downstream turbine

• New network (or model) per WF per turbine per 

minute

– Still feasible real time! 
• 20 epochs

• Batch size = 64

• Single hidden layer with 18 neurons

Short-term Wake Modelling
Machine Learning for short-term wakes
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• Multiple Wake (MuW) & overall Wind Farm (WF) output investigation 

– Same inflow for all three wind farms → 2-hours data with fairly perpendicular wind

• For Lillgrund, only the lower left corner of the WF is available → 12 turbines

– Same architecture for the neural network → same hyper-parameters for the LSTM

Short-term Wake Modelling
Machine Learning for short-term wakes

Th-MuW
HR-MuW

Lill-MuW
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Short-term Wake Modelling Single vs Multiple wake
Machine Learning for short-term wakes

• Still robust, but growing uncertainties with increasing complexity → case based model update is 

required 

• Generalizability of machine learning wake modelling (perhaps in synthesis with physical modelling) is 
the hot research topic for us now!
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Effect of Coriolis 
force  
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Modelling wakes at Rødsand & Nysted

- Rans (ASL, ABL, ABL+ Coriolis force)
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Wake efficiency
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Conclusion of wakes & coriolis

Do we need to model the Coriolis force in RANS?

• Single wind farm ⇒ not really.

• Wind farm wake interaction ⇒ YES!
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Cool wake 
measurements  

28



DTU Wind Energy26 September 2019 29



DTU Wind Energy26 September 2019

3D WindScanner wake measurements 
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Second order statistics
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Windfarm control
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Work flow and optimizer

Here we optimize on the Ct in the windfarm 
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• AEP gain: 1.37% … or 2.62% below rated!

Lillgrund case study
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Lillgrund case study ,AEP gain
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A two-parameter optimization tool showsthat production 
gains are in fact possible through de-rating

Lillgrund … 1 degree wind direction resolution 
and 1m/s wind speed resolution Overall AEP 
gain of 1 %
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Summary 

• How to improve the wake modelling 

– Use better physical models together with data to delvelop models engineering models 

that answer things like blockage, more precis wake losses

– Combine scada with physical models and AI in short term prediction of power output 

from windfarms

– Detailed atmospheric wake campaign to understand the transition from near wake to far 

field wakes  (using windscanners etc)
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