

Program manager DTU wind Hans Ejsing Jørgensen

Wakes – what's new or what's important

With Contributions from

Gunnar Larsen, Paul van Laen, Tuhfe Göçmen, Alexander Meyer Forsting, Niels G. Mortensen and many more from DTU Wind

Outline

- Blockage effects & and wakes from windfarms
- AI & wakes how to predict 1 min average power from a windfarm
- Wakes & Uncertainty
- · Cool measurments from a wake
- Control of wind farms

Some words on validation of wake models

26 September 2019 DTU Wind Energy

Wakes

The challenging area

What do we need to validate

- Velocity and turbulence in the wake is important for estimating Wakeloss and loads for the turbine within the wake.
- C_T the thrust coefficient from the turbin, Inflow conditions U (speed) and Turbulence (and stability)
- Wind farm data in form of power or loads
- All of above needs to be there to validate the wake models

Wake modelling offshore in CREYAP (EWEA, 2015)

- Wake models disagree inside wind farms: uncertainty (CV) \propto WTG wake loss
- Wakes represent a significant wind farm loss
 - Onshore: 6-10%
 - Offshore: 8-14%
- Modelled with separate wake models
 - Model name and specification important
 - Model configuration must be known too!
- WF wake modelling uncertainty (CV)
 - Onshore: 13-18%
 - Offshore: 16-22%
 - Uncertainty \propto WF wake loss
- Classic models seem to provide realistic results for Barrow Offshore Wind Farm

DTU

Single Wake – an automate comparison in Pywake in our optimization frame work TOPFARM

Figure 3: Case 3: Nibe B.

DTU

Windfarm efficiency

Data	— RANS	— NOJ ($k = 0.04$)	 GAU $(k = 0.026)$	
	RANS GA	NOJ ($k = 0.04$) GA	 GAU ($k = 0.026$) GA	

	Measurement data	RANS	NOJ	GAU
Wind farm efficiency	0.66 ± 0.016	0.64	0.58	0.65
Relative error [%]	-	-3	-11	-2

Figure 17: Case 12: Lillgrund wind farm efficiency.

Blockage effects

Induction zone

CFD validation with wind scanner

The lidar measurements

New stochastic CFD validation method

New stochastic approach

Wind farm power change free from wakes

Global blockage effect (GBE)

- Primary: Induction zones of turbines in wind farms add up
- · Secondary: Turbines act together as obstruction and divert flow around wind farms
- Estimated loss in AEP due to GBE: 1-3%

DTU model solutions:

- EllipSys3D, RAND-CFD with actuator disks
- Coupled FUGA
- Simple wake model + simple induction zone model

Al & wakes

• Gaussian Deficit → First Time in 1Hz SCADA

Mahdi Abkar and Fernando Porte-Agel. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study. Physics of Fluids, 27(3):1-20, 2015

Short-term Wake Modelling Re-calibration of Gaussian Deficit Model

• Gaussian Deficit → Bayesian Re-calibration

DTU Short-term Wake Modelling

Machine Learning for short-term wakes

- Machine Learning Platform TensorFlow
 - With Keras wrapper in Python
 - Fast & easy to apply
- The deep learning algorithm LSTM
 - Long Short-term Memory
 - Special building unit for RNN
 - Shown to perform faster & better for highly fluctuating time series

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

- The inputs from the upstream turbines
 - Defined at every minute (WD dependent)
 - WD, Ueff, std(Ueff), ct + uncertainties
 - Data fed for the previous 1-hour
 - Time window of 1-hour shifted forward at every minute

Machine Learning for short-term wakes

- Machine Learning Platform TensorFlow
- The inputs from the upstream turbines
 - Defined at every minute (WD dependent)
 - WD, Ueff, std(Ueff), ct + uncertainties
 - Data fed for the previous 1-hour
 - Time window of 1-hour shifted forward at every minute
- The output
 - Ueff at the downstream turbine
- New network (or model) per WF per turbine per minute
 - Still feasible real time!
 - 20 epochs
 - Batch size = 64
 - Single hidden layer with 18 neurons

LSTM : 1min averaged percentage error in Available Power, single wake

Short-term Wake Modelling

Machine Learning for short-term wakes

- Multiple Wake (MuW) & overall Wind Farm (WF) output investigation
 - Same inflow for all three wind farms \rightarrow 2-hours data with fairly perpendicular wind
 - For Lillgrund, only the lower left corner of the WF is available \rightarrow 12 turbines
 - Same architecture for the neural network \rightarrow same hyper-parameters for the LSTM

Short-term Wake Modelling Single vs Multiple wake Machine Learning for short-term wakes

- Still robust, but growing uncertainties with increasing complexity → case based model update is required
- Generalizability of machine learning wake modelling (perhaps in synthesis with physical modelling) is the hot research topic for us now!

Effect of Coriolis force

DTU

Modelling wakes at Rødsand & Nysted - Rans (ASL, ABL, ABL+ Coriolis force)

DTU

Wake efficiency

Conclusion of wakes & coriolis

Do we need to model the Coriolis force in RANS?

- Single wind farm \Rightarrow not really.
- Wind farm wake interaction \Rightarrow YES!

Cool wake measurements

3D WindScanner wake measurements

Second order statistics

Windfarm control

Work flow and optimizer

Lillgrund case study

•

Lillgrund case study ,AEP gain

gains are in fact possible through de-rating

Lillgrund ... 1 degree wind direction resolution and 1m/s wind speed resolution Overall AEP gain of 1 %

Summary

- How to improve the wake modelling
 - Use better physical models together with data to delvelop models engineering models that answer things like blockage, more precis wake losses
 - Combine scada with physical models and AI in short term prediction of power output from windfarms
 - Detailed atmospheric wake campaign to understand the transition from near wake to far field wakes (using windscanners etc)