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Full scale test of very large blades

• Will it make sense to test a 200 meter blade in the same way as we do today?

• What will it cost and how long time will it take?

• At which blade length will it stop to make sense?

• What is the maximum test time we can accept?

• Shall we then test blades in a different way?

• Is there a different path to go?

• What should happen before we can rely on computer simulations only?

• How can we verify and get confidence in our numerical structural models?
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Blade Test time

length flap edge days

86,4 0,61 0,93 167

100,0 0,5 0,75 205

120,0 0,41 0,61 251

150,0 0,32 0,47 323

200,0 0,23 0,33 453

Natural freq.



Recent results towards more realistic testing of 
wind turbine blades – BLATIGUE project

Oscar Castro, Federico Belloni, Peter Berring & Kim Branner
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BLATIGUE - Fast and efficient fatigue test of large 
wind turbine blades
A project supported by EUDP and VILLUM FONDEN

Project partners:

• DTU Wind Energy

• Siemens Gamesa Renewable Energy A/S 

• R&D A/S 

• Blade Test Centre A/S (BLAEST) 

• Olsen Wings A/S 

• DNV GL 

• Zebicon A/S 

• Ørsted A/S 

• Period: Dec. 2016 – May 2020

• Total hours: 30730 h
The objective of BLATIGUE is to develop fast and 
efficient fatigue test methods for large wind 
turbine blades and to develop equipment to 
excite the blades under such tests.
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Fatigue testing

• According to IEC61400-23 blades shall be tested in fatigue:

– In flapwise direction

– In edgewise direction
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A 12s sample of load cloud at 17m/s, 21m/s and 
25m/s at the SSP 34m blade root section

Complete load cloud at the SSP 34m blade 
cross section at R = 16m
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Development of multi-axis test methods

• Development is so far done on 14.3 m 
blades from Olsen Wings

• Different excitation methods used:

– Single axis

– Chaotic

– Lissajous curves
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Development of multi-axis test methods

• Two cross sections are considered:

– CS9 (42% from root)

– CS13 (63% from root)

• Optimization is used to meet the targets by combining 
different fatigue test methods in the most efficient way.

7

Error-based optimization Flap + Edge (Time-based optimization)
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All combined cases 
Load contribution - Error-based opt. 
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Conclusions

• Work in progress

• Method will be published soon

• Method still to be demonstrated in blade test lab

• Vision is to develop a fatigue method that is both faster and meet fatigue targets much more 
accurately

• It is uncertain how fast it can be without being too “wild”
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A way to verify and get confidence in our 
numerical structural models

Xiao Chen, Peter Berring, Kim Branner, Steen Hjelm Madsen, 
Sergei Semenov & Federico Belloni

DTU Wind Energy
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Cutting the subcomponent from the blade
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Waves/buckling are observed 
along the trailing edge
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FE Modelling with multiple material failures
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x’ y'

Node set at 
22.15 section
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Composites: Damage-mechanics based progressive failures  

Foam core: crushable failure with elastic and plastic behaviour 

Adhesive paste: cohesive elements traction-separation law 



DTU Wind Energy, Technical University of Denmark

Comparison between DIC measurement and FE 
simulation
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DIC measurement 

Out-of-plane deformation in the post-peak regime

FE simulation 
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DIC measurement 

Longitudinal strain in the post-peak regime

FE simulation 

Comparison between DIC measurement and FE 
simulation
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DIC measurement 

Transverse strain in the post-peak regime

FE simulation 

Comparison between DIC measurement and FE 
simulation
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Normalized displacment (mm/mm) Actuator cross head shortening/Specimen length

Panels start to contact

Panels start to buckle

Buckling load

Peak load

Foam starts to fail

Adhesive and composite failure

Final failure 

Linear response

Normalized displacement δ/l0 (mm/mm) 

(Actuator displacement/specimen length)

Failure sequence
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Failure prediction – Foam failure
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Contact status of sandwich panels
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Failure prediction – Adhesive failure at trailing 
edge bond line
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Reinforcement of trailing edge region
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• Failure is now predicted to happen
at a 45% higher load
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Conclusions and future study

• Subcomponent testing provides a new opportunity to investigate structural response of large 
wind turbine blades in an efficient way.

• The proposed FE modeling techniques show good capability to predict progressive failure of 
trailing edge section with multiple failure modes.

• The failure process of the trailing edge section is buckling driven. The contact status between 
two sandwich panels affects the failure process considerably.

• Foam failure starts before the peak load, while adhesive failure and composite failure occur 
in the post-peak regime.

• Can we relay on structural models when we have:

– Demonstrated that the global response is modelled correct

– Verified that failure at critical regions will happen at higher strain levels than seen in 
operation
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Numerical response of the SSP blade
- strain and failure mode
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At failure computed via Tsai-Wu Longitudinal strain and location of elastic center at 
20% of the certification load in LTT



DTU Wind Energy, Technical University of Denmark27

Failure prediction – Composite failure (TE region)

Laminate fracture
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Failure prediction – Composite failure (sandwich skin)

 C

26.6

26.4

26.1

25.8

25.5

25.2

24.9

24.6

24.3

24.0

23.7

23.4

23.1

22.8

22.4

21.6

Location and IR thermographic visualization of skin laminate fracture at sandwich panels  

Pressure side

Matrix-dominant 
failure mode

Fiber-dominant 
failure mode


