Large scale experimental aerodynamics – status and perspectives

Christian Bak

Senior Scientist, Head of the Poul la Cour Tunnel DTU Wind Energy

Presentation at Wind Energy Denmark Skagen Blade Technology 30 October 2018

DTU

BACKGROUND

Background <u>1976-83 at Risø</u>: Wind turbine tests

DTL

In 1970'-80's NASA made wind turbine tests

In 1990's: Aerodynamic tests on rotors

- We got important knowledge about e.g. 3D effects
- Challenge
 - Measuring the inflow?
 - Too much wind
 - The weather:
 - Rain
 - Lightning

– Cost

In 2000's: More frequent use of wind tunnels

In 2009: Test on NM80 rotor (DANAERO)

24 October 2018

Today

Turbines are very big: Blades up to 107m length and towers up to 150m

Today Challenges

- Reynolds number (=size)
- Transition from laminar to turbulent
- Turbulence
- Increasing Mach number (=increasing tip speed)
- Stall
- Thick airfoils
- Tip shapes
- ...

DTU

Challenges Reynolds number

1.6

Challenges Transition from laminar to turbulent + turbulence

Challenges **Increasing Mach number**

LARGE SCALE TESTS IN THE FUTURE

Test section, control room, workshops, meeting room

Large wind tunnel The Poul la Cour Tunnel

Fan, cooling surface

Large wind tunnel The different components

The fan upstream

15

The contraction and screens

24 October 2018

Full scale wind turbine An example: DTU research wind turbine

• The turbine

-Vestas V52 (P_{rated} =850kW, D_{rotor} =52m, H_{hub} =44m)

• Sensors

- Blade and tower moments
- Power, pitch, rotational speed
- Yaw angle
- Wind speed and wind direction
- Test possibilities
 - Aerodynamics new designs, devices etc
 - Aeroelastics and control

16

In between wind tunnel and rotor Rotating rig

- Aerodynamic measurements incl rotation:
 - A rotating rig (one boom forced in rotation by a motor)
 - A wing section corresponding to one to be tested in the Poul la Cour Tunnel
 - Advantage (and in the same time challenge):
 - Rotational effects
 - Atmospheric flow
 - Unsteady conditions

In between wind tunnel and rotor **Rotating rig**

 CI/Cd-aoa measured data vs wind tunnel tests

A chain of test From wind tunnel to full scale

Experiments connected to modeling

Models validated by
measurements

 Experiments analyzed by computations

Perspectives for experimental aerodynamics

- Further analysis of the transfer function from wind tunnel to rotor
- Development of measurement techniques for full scale rotors
- Develop the rotating test rig

Thank you

Contacts

Poul la Cour Tunnel, Christian Bak, <u>chba@dtu.dk</u> Rotating rig, Helge A. Madsen, <u>hama@dtu.dk</u> DTU Research Turbine, Søren Lind, <u>soli@dtu.dk</u>

