

EUDP2018-I AeroLoop Accelerate and enhance quality in aerodynamic and aeroacoustic design loops

Christian Bak

Senior Scientist, Head of the Poul la Cour Tunnel DTU Wind Energy

Presentation at Wind Energy Denmark 2018 30 October 2018

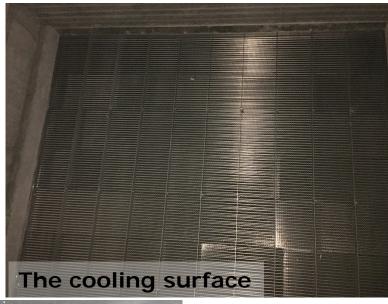
BACKGROUND

Poul la Cour Tunnel inaugurated April 2018

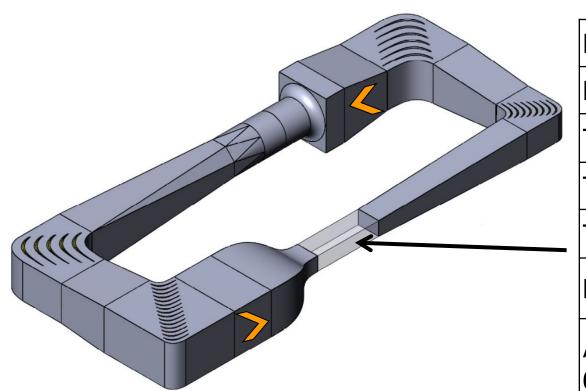
Test section, control room, workshop, meeting room

Fan, cooling surface

Entrance


3

Poul la Cour Tunnel The different components


Poul la Cour Tunnel The history in short

- 2011, April:
 - -Green light from the Research and Innovation Agency to find national agreement for a wind tunnel as a national research infrastructure.
- 2011, December:
 - -Discussions with the Danish wind turbine industry (Siemens, Vestas, LM Wind Power, Suzlon), universities (AaU, AU), GTS institutes (FORCE) and other relevant institutions (DONG, The Danish Wind Industry Association): A project description was submitted to the Research and Innovation Agency
- 2012, May
 - -DKK 44 mio was granted mid 2012
- 2012-2016
 - The design was discussed with the Danish stakeholders within wind energy
- 2018, April
 - -The Poul la Cour Tunnel was inaugurated

Poul la Cour Tunnel The design is unique

Description	Value
Maximum flow speed [m/s]/[km/h]	~105/378
Test section: Width [m]	3.00
Test section: Height [m]	2.00
Test section: Length [m]	~9
Maximum turbulence intensity [%]	Max 0.1
Anechoic room with background noise at 60m/s [dB]	<70

THE AEROLOOP PROJECT

AeroLoop Partners and time

Partners

- DTU Wind Energy
- Vestas
- SiemensGamesa
- Suzlon
- LM Wind Power

Period

– Project start: 1 October 2018

– Project end: 30 September 2020

AeroLoop Objectives

The 4 AeroLoop Objectives

1.	High quality measurements
2.	Accelerated wind tunnel measurements by increasing the turnaround cycles substantially
3.	Benchmarked wind tunnel measurements by comparing to several other wind tunnels
4.	Improved airfoils for each of the partners

AeroLoop Why the name "AeroLoop"

Blade design process before the AeroLoop project

Input: Rotor size and loads	Selection of airfoils	Aerodynamic design of blade	Documentation of airfoil aerodyna- mics	Final blade design	Manu- facture of blade proto type	Test of rotor proto type	Rotor ready for commer- cial wind turbine
	Selection of materials	Structural design of blade	Documen- tation of structural integrity				

Time

Blade design process after the AeroLoop project

Input: Rotor size and loads	Selection of airfoils	Aerodynamic design of blade	Docu- menta- tion of airfoil	Final blade design	Manu- facture of blade proto type	Test of rotor proto type	Rotor ready for commer- cial wind turbine
	Selection of materials	Structural design of blade	Documen- tation of structural integrity				

AeroLoop activities Increasing the performance of the wind tunnel

Transition

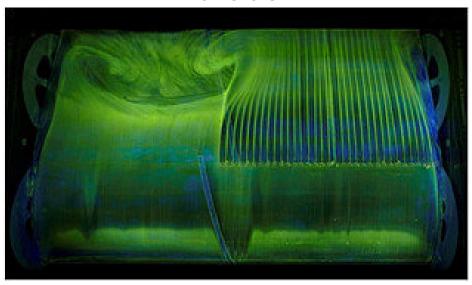
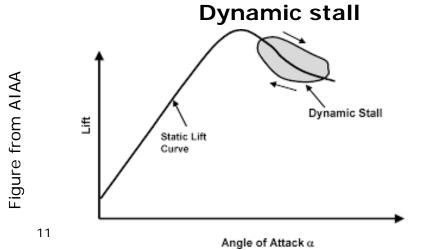
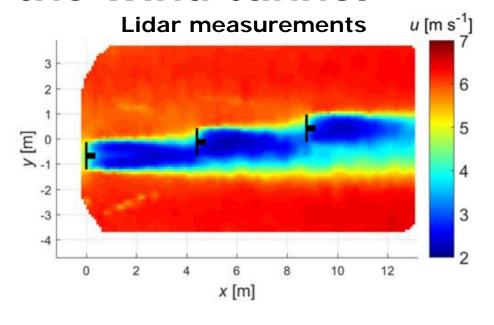
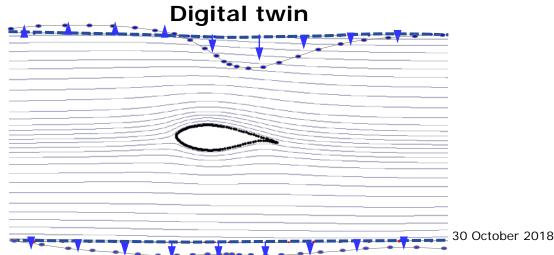
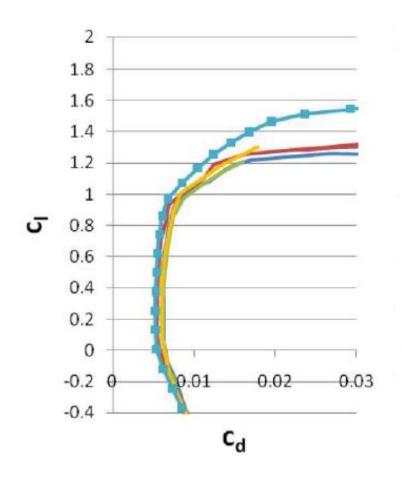
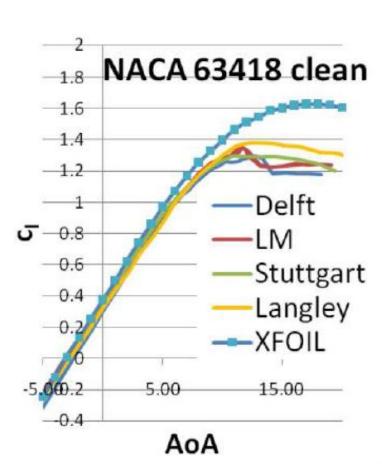
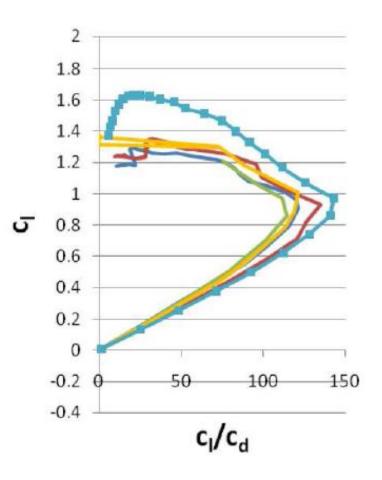





Photo from LM Wind Tunnel

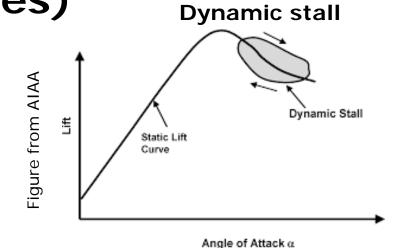


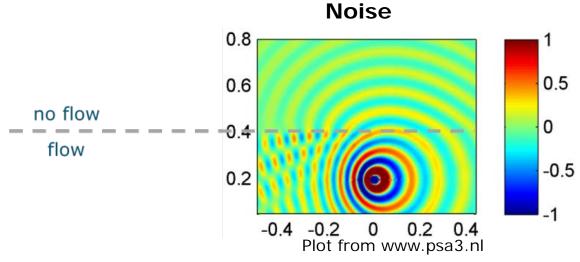




AeroLoop activities Benchmark

AeroLoop activities Develop new products (examples)



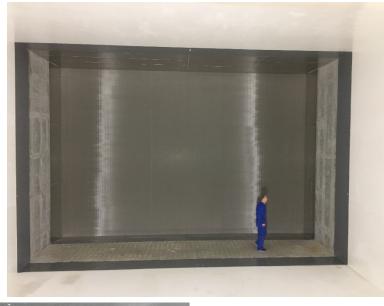

Add-ons

Leading edge roughness

AeroLoop Summary

- We just had a kick-off meeting
- First benchmark tests around February 2019
- The EUDP grant gives
 - -the opertunity to lick off the new wind tunnel facility
 - -will increase the value of the facility for the industry and the society

Thank you!



Christian Bak chba@dtu.dk

The Poul la Cour Tunnel www.plct.dk contact@plct.dk

Acknowledgement to EUDP

