

covestro

Covestro PUR Infusion resin

Kim H. Klausen October 18

covestro.com

Technical advice

This information and our technical advice – whether verbal, in writing or by ways of trial –are given in good faith but without warranty, and this also applies where proprietary rights of third parties are involved.

The information is provided by Covestro without assumption of any liability.

Our advice does not release you from the obligation to verify the information provided – especially that contained in our safety data and technical information sheets –, to check for updates of any information provided by us and to test our products as to their suitability for the intended processes and uses.

The application, use and processing of our products and the products manufactured by you on the basis of our technical advice are beyond our control and, therefore, entirely your own responsibility.

Our products are sold in accordance with the current version of our General Conditions of Sale and Delivery.

2

Covestro PUR infusion resin

Main characteristic

- Low viscosity
- Fast curing
- Color change indicating degree of cure
- Low exotherm
- Excellent mechanical properties

Proven industrial feasibility

In April 2016, 1.5MW wind blade (37.5m, ~5800kg) was made with Covestro polyurethane resin

Blade components

Spar cap PU resin 44 layers UD1200

Shear web PU resin PVC Foam Biax 1800

Blade shell PU resin max.110 layers UD, Biax, Triax PVC foam Balsa wood Full blade

14 Wind Blades made – 2 Wind up running

Section trials

Spar Cap

Widest Chord

- Testing of lay up
- Testing of compatibility with other materials like:

covestro

- Glass
- Flow mesh
- Core materials
- Peel ply
- Vap membrane
- Processing parameters

Spar Cap Section Trial

Record of infusion. Total infusion time 38 minutes.

Pressure Metering Valve bar

Shotweight g

Viscosity

100 g. resin in constant water bath

8

Infusion time with PUR is in general less than 50% of Epoxy

Curing time necessary to reach min. 95% conversion rate

covestro

Degree of Cure and Colour Change

Colour of test plates 4mm cured 2h@60°C, then

Colour change indicating degree of cure

100 90 80 70 **Temp Surface** °C 60 — Temp Core °C 50 - - Temp Surface 40 — Temp Core °C

Exothermic peaks of thick layer composite

60 layer UD composite

30

88 00:0 5:00 00:0 8 00.0 00:00 Ō

00200

 \mathcal{O}

က

Hour

20

 \sim

Compatibility with other resins and adhesives

It is obvious to start using the PUR resin for the Root ring and the Spar Cap, but this requires compatibility with other resins and common used adhesives.

We have tested the compatibility with selected Epoxy resins and adhesives.

Lap shear strength between PUR and Epoxy resin

Lap shear strength between two layers of resin

covestro

Lab shear strength between substrate and Epoxy adhesive Lap shear strength with epoxy (EP) adhesive

Properties of polyurethane resin FRP

Uniaxial glass fiber TM+ glass (EKU1200 (0) PU (TM+))

Property	Test method	Item	Unit	Data range	FWF%
		Tensile strength	MPa	1200-1400	
0° Tensile property	DIN EN ISO 527-5 Type A	Tensile modulus	GPa	49-52	76-78
	027 0 Type //	Dependent variables	%	2.0-3.0	
		Compressive strength	MPa	1100-1200	
0° Compressive	npressive DIN EN ISO operty 14126 Form B	Compressive modulus	GPa	50-52	76-78
property	14120101110	Dependent variables	%	2.0-3.0	
00° T		Tensile strength	MPa	60-70	
90° lensile property	DIN EN ISO 527-5 Type B	Tensile modulus	GPa	16-20	76-78
h h)	027 0 Type D	Dependent variables	%	0.4-0.5	
		Tensile strength	MPa	200-250	
90°Compressive	DIN EN ISO 14126 Form B	Tensile modulus	GPa	18-22	76-78
property	14120101110	Dependent variables	%	2.0-3.0	
Inter-laminar	ASTM 7070	Shear strength	MPa	70-80	70.70
shear	r ASTM 7078	Shear modulus	GPa	5.0-6.0	/0-/8

October 18 | TBM Conference Hamburg

Data source: CPIC Test Report QC2017/009

Properties of polyurethane resin FRP Biaxial glass fiber E- glass (EKB800 (+45/-45) PU)

Property	Test method	Item	Unit	Data range	FWF%
		Tensile strength	MPa	180-200	
0°Tensile property	DIN EN ISO 527-5 Type A	Tensile modulus	GPa	16-78	76-78
p. op o. ()	JZ7-J Type A	Dependent variables	%	12-15	
		Compressive strength	MPa	200-240	
0°Compressive property	DIN EN ISO 14126 Form B	Compressive modulus	GPa	16-18	76-78
	Dependent variables	%	5.0-6.0		
+45° Shear	ASTM 7079	Shear strength	MPa	60-80	76.79
145 Sileal	ASTIVI / U/8	Shear modulus	GPa	5.0-6.0	/0-/8

Properties of polyurethane resin FRP

Triaxial glass fiber E-glass EKT1250(0,+/-45) PU

Property	Test method	Item	Unit	Data range	FWF%
		Tensile strength	MPa	700-800	
0°Tensile	DIN EN ISO	Tensile modulus	GPa	30-31	74-76
property	527-5 Type A	Strain	%	3.0-4.0	
0.0		Compressive strength	MPa	700-800	
property	DIN EN ISO 14126 Form B	Compressive modulus	GPa	35-37	74-76
		Strain	%	2.5-3.5	

We have much more data.

Some examples:

- Ageing test
 - 70 °C 95 % Rel. Humidity
 - 80 °C natural humidity
 - In water at 23 °C
 - Tensile module
 - Tensile strength
 - Mass change
- Test of composite
 - Fatigue R = -1, R = 0,1
 - Tensile
 - Compression
 - Interlinear shear

- Impact strength
- Tg. by DMA, TMA, DSC
- Conversion rate by DSC
- Strength. vs. temperature
- Water absorption
- Shrinkage
- Tensile strength
- Compression strength
- Creep
- Shear strength
- Elongation

Test results

Fiber reinforced composite – fatigue test R= -1 tension – compression

Polyurethane

Statistical evaluation of the S-N curve, R = -1, test series B027/16-PUR04-SNC

Slope exponent of the S-N-curve:	12,9	
σ_a at 10 ⁶ load cycles (50 % S-N-curve) [MPa]:	351,3	
Regression equation (50 % S-N- curve):	y = 1022,5·x ⁻⁰),0773
Coefficient of correlation:	r = -0,951	
Quantile factor k_s (scatter of σ unknown) for n = 16:	2,52	

Regression values of 95 %-survival probability S-N curve with 95 % confidence level

October 18 | TBM Conference Hamburg

IMA Dresden test report, Fatigue test tension-compression

Ероху

covestro

Statistical evaluation of the S-N curve, R = -1, test series B027/16-EP02-SNC

Slope exponent of the S-N-curve:	12,1
σ _a at 10 ⁶ load cycles (50% S-N-curve) [MPa]:	304,7
Regression equation (50% S-N-curve):	y = 954,9·x ^{-0,0827}
Coefficient of correlation:	r = -0,972
Quantile factor k_s (scatter of σ unknown) for n =16	2,52

Three point bending

Longer and longer blades –

- leads to exponential increase of the cost

Value for our customers

Forward-looking statements

This presentation may contain forward-looking statements based on current assumptions and forecasts made by Covestro AG.

Various known and unknown risks, uncertainties and other factors could lead to material differences between the actual future results, financial situation, development or performance of the company and the estimates given here. These factors include those discussed in Covestro's public reports, which are available on the Covestro website at <u>www.covestro.com</u>.

The company assumes no liability whatsoever to update these forward-looking statements or to adjust them to future events or developments.

Thank you for your attention

Kim Klausen April 2018 TBM Conference Hamburg

covestro.com