

Wind Energy Denmark 2018

Winglets

Reduction of induced drag on low aspect ratio wing by alteration of wingtips

Christian Athit Bak Christensen Master Student DTU Wind Energy

DTU Wind Energy Department of Wind Energy

Background The Druine Turbulent

(Source: Erik Frikke, Vamdrup 1985.)

2 DTU Wind Energy

Background The **D**ruine Turbulent

(Source: Erik Frikke, Vamdrup 1985.)

· Aspect Ratio:

Problem Induced Drag

(Source: nasa.gov, F8F-1 Bearcat, Langley 1946.)

(Source: nasa.gov, P-51B Mustang, Ames 1943.)

Problem Induced Drag (2)

- Drag due to lift.
- Spanwise pressure gradient.

Problem Induced Drag (2)

- Drag due to lift.
- Spanwise pressure gradient.
- Vortex formation.
- Tip vortices and downwash.

Problem Induced Drag (3)

(Source: Van Dyke, Album of Fluid Motion, 1982.)

(Source: Unknown, Tu-95/114 Aircraft.)

Problem

Induced Drag (4)

- Downwash, w
- Induced AOA, α_i
- Rotation of aerodynamic force

Solution Winglets

(Source: nasa.gov, KC-135 winglet prototype, Dryden 1979.)

(Source: nasa.gov, KC-135, Dryden 1979.)

Solution Winglets (2)

(Source: nasa.gov, KC-135 winglet prototype, Dryden 1979.)

Preliminary Design

Lanchester 1907.

Prandtl's Lifting-line Theory

- · Potential flow.
- Kutta-Joukowski Theorem
- Lift distributions on 3D wing-configurations

(Literature: "Fundamentals of Aerodynamics", Anderson. "Low-speed Aerodynamics", Katz/Plotkin.)

Winglets 30.10.2018

Method

Upgraded Wing Configuration Winglets

(CAD Software: Matlab)

10 DTU Wind Energy

Winglets 30.10.2018

Method

Upgraded Wing Configuration Winglets

1/2

c/3

 $\sim 5^{\circ}$

 \sim 60 $^\circ$

(CAD Software: Matlab)

Winglets 30.10.2018

DTU

Method CFD Analysis Final Design

- Steady state simulation.
- k- ϵ turbulence.
- $\bullet \, \mathrm{Re} \approx 10^6$

(CFD Software: OpenFOAM, Star-CCM+, ParaView)

CFD Analysis Streamlines - Upgraded Wing Configuration

CFD Analysis Pressure Distribution - Standard Wing Configuration

CFD Analysis Pressure Distribution - Upgraded Wing Configuration

CFD Analysis Pressure Distribution - Upgraded Wing Configuration (2)

CFD Analysis Pressure Distribution

- Improved spanwise pressure gradient.
- Weak loads on winglet.
- No disturbance of aileron area.

18

CFD Analysis Comparison - Lift

- Improvement increases with AOA.
- Relative improvement of about 9 to 13 percent.
- Better take-off and landing.

CFD Analysis Comparison - Aerodynamic Efficiency

- Relative improvement increases with AOA.
- Relative improvement of about 7 to 10 percent.
- Better overall flight efficiency.

Summary

Evaluation of Results **Aircraft Performance**

• Take-off and landing \checkmark $\bigvee_{\text{stall}} \propto \frac{1}{C_{L}^{1/2}}$

Summary

Evaluation of Results Aircraft Performance

- Take-off and landing √
- Shaft power required ↓

Summary

Evaluation of Results Aircraft Performance

- Take-off and landing √
- Shaft power required ↓
- Range \uparrow

DTU

☵

Summary Final Notes Aerodynamics and Winglets

- Aerodynamics discipline is complex.
- Unique design for each application; Reynolds and Mach number ranges.
- Modern technology; CFD is very accessible, fly-by-wire computers, exotic materials, ect.
- Traditional wing design complemented by modern tools.

DTU

#

Wind Energy Denmark 2018

Winglets

Reduction of induced drag on low aspect ratio wing by alteration of wingtips

Christian Athit Bak Christensen

Master Student DTU Wind Energy

E-mail: christianathit@hotmail.com

Project Supervisors

Martin Otto Laver Hansen, Associate Professor Leif Lind, Foreningen for Elektrisk Fremdrift