Multipoint high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine

Mads Holst Aa. Madsen Supervisors: Sr. Researcher F Zahle Prof. NN Sørensen Asst. Prof. SJ Andersen Prof. JRRA Martins

Aerodynamic Design Section - DTU RISØ

DTU Wind Energy Department of Wind Energy

Motivation and literature overview

Motivation

- To use CFD-based shape optimization early in the design process

- Gradients from Adjoint solvers does not depend on number of design variables
- To compare BEM and CFD on identical case studies

Author	Year	Adjoint	Dim	Mesh size	variables	Iterations
Economon et al.	2013	Continuous	3D	$7.90\cdot 10^6$	84	3
Vorspel et al.	2016	Continuous	3D	$2.4\cdot 10^6$	-	< 8
Dhert et al.	2017	Discrete	3D	$2.60\cdot 10^6$	1-252	≤ 23
Vorspel et al.	2018	Continuous	3D	$5.20\cdot 10^6$	≤ 9	< 8
Tsiakas et al.	2018	Continuous	3D	$2.50\cdot 10^6$	135	10
Madsen et al. (present work)	2018	Discrete	3D	$14.16\cdot 10^6$	1-154	≤ 200

Table: Overview of related 3D works using the adjoint method.

Please note:

- high-fidelity optimization still a rare commodity - (almost) all previous work is on NREL VI

• Overview of MDOLab's optimization framework at University of Michigan.

Setup and design optimization problem

- Up to 154 design variables: Pitch, twist, chord and shape
- RANS steady state model

Design optimization problem

maximize AEP(x)xwith respect to Chord_i, $i = 1, \ldots, (n-2)$ Twist, i = 1, ..., (n - 2)Shape_i, $i = 1, \ldots, l \cdot (n-2)$ subject to $\operatorname{Thrust}(x) \leq 1.14 \cdot \operatorname{Thrust}(x_0)$ $M_{b}(x) < 1.11 \cdot M_{b}(x_{0})$ Thickness $(x) \ge$ Thickness_{IEA Task 37 limit}.

Planform optimization

 $\begin{array}{ll} \underset{x}{\operatorname{maximize}} & \operatorname{Torque}(x) \\ \text{with respect to} & \operatorname{Pitch}, \\ & \operatorname{Twist}_{i}, \ i=1,\ldots,7, \\ & \operatorname{Chord}_{i}, \ i=1,\ldots,7, \\ & \operatorname{Shape}_{i}, \ i=1,\ldots,7, \\ & \operatorname{Shape}_{i}, \ i=1,\ldots,420, \\ \text{subject to} & \operatorname{Thrust}(x) \leq 1.14 \cdot \operatorname{Thrust}(x_{0}), \\ & \operatorname{M}_{b}(x) \leq 1.11 \cdot M_{b}(x_{0}), \\ & \operatorname{Thickness}(x) \geq \operatorname{limit}_{IEA}. \end{array}$

 $C_P = 1.04, 0.62$ and 0.48 for mesh level L2, L1 and L0.

Comparison to BEM

Shape optimization

$\begin{array}{c} \underset{x}{\text{maximize}}\\ \text{with respect to} \end{array}$	Torque (x) Pitch. Twist _i , $i = 1,, 7$, Chord _i , $i = 1,, 7$, Shape _i , $i = 1,, 1 \cdot 140$.	1.0e-01	MAN MANA ANA L2
subject to	Snape _i , $i = 1,, l \cdot 140$. Thrust $(x) \le 1.14 \cdot \text{Thrust}(x_0)$, $M_b(x) \le 1.11 \cdot M_b(x_0)$, Thickness $(x) \ge \text{limit}_{IEA}$.	0 1.0e-03	Mal Maran
In total 154 design varia	ables		

1.0e-04

0.0

20.0

80.0

60.0

.0 40.0 Major iteration [-]

•Problematic leading edge shape for single point shape optimization

Overview of results from planform and single point

Table: A comparison to BEM results from IEA Task 37.

		— present wor	———–- IFA Task 37 ———–		
Mesh level	Torque(x^0) Torque(x^*) Improvement		Improvement	BEM1 Improvement	BEM2 Improvement
	[Nm]	[Nm]			
L 0: $14.155 \cdot 10^{6} cells$	$4.88\cdot 10^6$	$5.42 \cdot 10^6$	11.07%		
L 1: $1.769 \cdot 10^6 \ cells$	$6.12\cdot 10^6$	$6.88\cdot 10^6$	12.42%	8.06%	22.46%
L 2: $0.221 \cdot 10^6 \ cells$	$10.40\cdot 10^6$	$11.57\cdot 10^6$	11.25%		

Table: Overview of single point optimization results.

Mesh level		Single point optimization +					
	Torque(x^0)	Torque(x*)	Improvement				
	[Nm]	[Nm]	•				
L 0 : $14.155 \cdot 10^6$ cells	$4.88 \cdot 10^6$	$5.65 \cdot 10^6$	15.78%				
L 1: $1.769 \cdot 10^6$ cells	$6.12\cdot 10^6$	$7.37\cdot 10^6$	20.10%				
L 2: $0.221 \cdot 10^6$ cells	$10.40\cdot 10^6$	$12.70\cdot 10^6$	22.11%				

Multipoint shape optimizations

We can improve the leading edge shape by:

•Taking more AoAs into account:

•Adding geometrical leading edge constraints:

Multipoint w.o. LE constraint

Conclusion

- It is feasible to use CFD earlier in the design process
- Constraints on flapwise bending-moment and geometry (LE) are a must
- Optimization should be multipoint and on sufficient mesh resolution

Future work

- Load envelope is a challenge
- Add structural discipline
- Transient simulations

Submitted to Wind Energy Science

Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2018-66 Manuscript under review for journal Wind Energ. Sci. This is just a preview and not the published paper. © Author(s) 2018. CC BY 4.0 License.

Multipoint high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine

Mads H. Aa. Madsen¹, Frederik Zahle¹, Niels N. Sørensen¹, and Joaquim R. R. A. Martins²

¹Aerodynamic Design Section, DTU Wind Energy, Risø Campus, Frederiksborgvej 399, 4000 Roskilde, Denmark ²Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA

Correspondence: Mads H. Aa. Madsen (mham@dtu.dk)

Abstract. The wind energy industry relies heavily on CFD to analyze new turbine designs. To utilize CFD further upstream the design process where lower fidelity methods such as BEM are more common, requires the development of new tools.

Thank you for your time

Questions ?

Literature overview

Author	Year	Adjoint	Dim	Mesh size	variables	Iterations		
Ritlop and Nadarajah	2009	Discrete	2D	$0.32\cdot 10^5$	385	≤ 200		
Khayatzadeh and Nadarajah	2011	Discrete	2D	$1.31\cdot 10^5$	385	-		
Schramm et al.	2014	Continuous	2D	$55.00\cdot 10^3$	720	-		
Schramm et al.	2016	Continuous	2D	-	480	-		
Barrett and Ning	2016	Continuous	2D	$14.00 \cdot 10^3$	≤ 22	-		
Schramm et al.	2018	Continuous	2D	$2.08\cdot 10^5$	≤ 50	≤ 30		
Barrett and Ning	2018	Continuous	2D	$14.34\cdot 10^3$	≤ 68	-		
Economon et al.	2013	Continuous	2D	$32.0\cdot 10^3$	50	10		
			3D	$7.90\cdot 10^6$	84	3		
Vorspel et al.	2016	Continuous	2D	-	2	30		
			ЗD	$2.4\cdot 10^6$	-	< 8		
Dhert et al.	2017	Discrete	3D	$2.60\cdot 10^6$	1-252	≤ 23		
Vorspel et al.	2018	Continuous	3D	$+ 5.20 \cdot 10^{6}$	≤ 9	< 8		
Tsiakas et al.	2018	Continuous	ЗD	$\S~2.50\cdot 10^{6}$	135	10		
Madsen et al. (present work)	2018	Discrete	3D	$14.16\cdot 10^6$	1-154	≤ 200		
+ Symmetric BCs offectively doubling the grid resolution								

Table: Overview of related works using the adjoint method.

† Symmetric BCs effectively doubling the grid resolution. § Tsiakas2018 only give the number of mesh nodes.

Analysis: Mesh convergence

Analysis: Mesh convergence

Table: Mesh convergence study for the compressible solver ADflow and the incompressible solver EllipSys3D.

	ADflow				EllipSys3D			
Mesh level	Thrust	error	Torque	error	Thrust	error	Torque	error
L-1: 47.776	603	2.4~%	4.547	2.2~%	577	0.9~%	4.471	0.2~%
L 0: 14.155	625	6.1~%	4.877	9.6~%	573	0.2~%	4.457	0.5~%
L 1: 1.769	733	24.4~%	6.156	38.3~%	578	1.0~%	4.402	1.7~%
L 2: 0.221	934	58.6~%	10.403	134.5~%	584	2.1~%	4.336	3.2~%
Mesh level: $\cdot 10^6$ [cells], Torque: $\cdot 10^6$ [Nm], thrust: $\cdot 10^3$ [N]								

Analysis: Integrated loads

Pitch optimization

