Integrating Scanning Lidar with LES for Wake Characterization in Complex Terrain

Supervisors

Jacob Berg, DTU, Supervisor Wim Bierbooms, TU Delft, Supervisor Rebecca Barthelmie, Cornell University, co-supervisor

Problem Definition

We would like to characterize wind turbine wakes using scanning lidars

Specifically, how can the scanning geometry be chosen to maximize accuracy of wake characteristics?

From Mike Courtney/DTU Wind Energy. https://www.nature.com/news/world-s-largest-wind-mapping-project-spins-up-in-portugal-1.21481

How is this accomplished in complex terrain environments?

Motivation – Complex Terrain

Why complex terrain?

Features of terrain introduce **new flow effects**, which can be taken advantage of

- Flow speed up in up-sloping terrain
- But, higher uncertainties in AEP → need to study further

Source: https://globalwindatlas.info/about/method

Countries like China have lots of mountainous terrain

Motivation – Lidar

Why use lidar?

- Addresses market need for replacing expensive met-masts
- Tip heights are approaching 200 m. Lidars can probe wind at distances > 1 km
- Vast majority wake models assume horizontally homogeneous conditions and no flow separation → not accurate in complex terrain!

Wakes need to be studied experimentally...

Specifically, how can the scanning geometry be chosen to maximize accuracy of wake characteristics?

From Mike Courtney/DTU Wind Energy. https://www.nature.com/news/world-s-largest-wind-mapping-project-spins-up-in-portugal-1.21481

Approach

How is accuracy determined?

Need a reference for the "true" wake metric values

Use **Large-Eddy Simulation data** as the wind field, and sample the LES in space and time as a scanning lidar would

"Synthetic lidar" = sampling of simulated wind field in with a virtual lidar

From a cloud of lidar measurement points, <u>extract wake</u> <u>characteristics</u>, and <u>compare to same characteristics</u> <u>derived from LES fields</u>

 \rightarrow Taking the LES as ground truth gives an "error" of the lidar's wake metrics

Approach

 Use previously generated LES data for flow in Perdigão, Portugal, a complex terrain site with a wind turbine.

Field experiments performed in 2016-2017

- Develop synthetic lidar model to based off the field lidar characteristics
- Create new scan geometries and test their accuracy

→ Potential to **optimize scanning geometry** for wake metric accuracy

Lidar measurements in complex terrain present several challenges...

Source: Google maps, 2018

Challenges – from Lidar

 Lidar scans represent neither instantaneous nor mean velocity fields

> Which type of LES fields should be used as the 'truth'? Instantaneous? Averaged over scan cycle?

 Movement of wake during a scan will ______ result in a "distorted" wake shape, making wake metrics lose accuracy

Synthetic lidar scan, normalized radial velocity field. Negative $u_r = towards$ the lidar

TUDelft

EWEM/

Building the Synthetic Lidar Model

Danmarks

Sample the LES field like a real scanning lidar

Interpolate the LES data at time and space coordinates of lidar points

In space:

 Linearly interpolate lidar points from LES points in 3D

<u>In time:</u>

 Linearly interpolate in time between LES time steps

10

Wake Characterization Methods

Focus on two metrics: Wake center location and wake center velocity Assume: Wake center coincides with point of maximum velocity deficit

Creating Test Geometries

• Which parameters to vary?

Scan point density

Creating Test Geometries

PPI : Hold elevation angle φ constant & vary azimuth θ

• Which parameters to vary?

Scan path: PPI and RHI

RHI : Hold azimuth θ constant & vary elevation angle φ

Vary the **density** $\Delta\theta$, $\Delta\phi$ (resolution) and **scan path** to make **10 new geometries**:

■ 5 different "resolutions" (20m,30m,40m,60m,70m)

y [m] 1600 1400 1200 800 **40** m z [m] ₆₀₀ 400 2500 2000 x [m] 1500

2 different scan paths (PPI & RHI)

Results

Remember, synthetic scan field \neq inst. fields nor mean fields. So, which type of LES field to use?

Will compare to 2 types of LES fields:

Instantaneous at t_0

Averaged over the scan

Synthetic scan

Error—Wake center velocity

Danmarks

- Performance of resolutions depends on downstream location
- **Trade-off** in spatial & temporal resolution:

Low spatial res. → less precise wake location XHigh time res. → less distorted wake ✓

<u>High spatial res.</u> \rightarrow more precise wake location \checkmark Low time res. \rightarrow more distortion due wake movement X

Analysis - Error

Instantaneous LES FieldsAveraged LES fields• Wake detection method sensitive to fast
velocity fluctuationsAveraging distorts wake shape and
misplaces wake center location• Method sometimes misplaces wake center
in slow pocket of air outside wake.Low time res. -> More accurate for slower
moving wakesHigh time res. -> More accurate for fast moving
wakesLow time res. -> More accurate for slower
moving wakes

- Need to know more about the time scales of the wake to decide between the two
- Further work: investigate time scales through an FFT of the wake center position

Analysis – Optimal Geometry

If we assume in our case,
a slow moving wake \rightarrow PPI,30m
geometry is the most accurate

fast moving wake \rightarrow RHI,40m

Instantaneous			Averaged	
Resolution	E _{ur} [–]	E _x [m]	E _{ur} [–]	E _x [m]
Res=20m	0.25	0.45D	0.19	0.36 D
Res=30m	0.21	044	0.19	0.34 D
Res=40m	0.24	0.57 D	0.25	v.42 D
Res=60m	0.25	0.51 D	0.21	0.48 D
Res=70m	0.27	0.64 D	0.23	0.62 D
	In Resolution Res=20m Res=30m Res=40m Res=60m Res=70m	Instanta Resolution E _{ur} [-] Res=20m 0.25 Res=30m 0.21 Res=40m 0.24 Res=60m 0.25 Res=70m 0.27	Instantareous Resolution E _{ur} [-] E _x [m] Res=20m 0.25 0.45 D Res=30m 0.21 0.44 D Res=40m 0.24 0.57 D Res=60m 0.25 0.51 D Res=70m 0.27 0.64 D	Instantareous Average Resolution E_{u_r} [-] E_x [m] E_{u_r} [-] Res=20m 0.25 0.45D 0.19 Res=30m 0.21 0.44 \square 0.19 Res=40m 0.24 0.57D 0.25 Res=60m 0.25 0.51D 0.21 Res=70m 0.27 0.64D 0.23

RHI Geometries

Resolution	E _{ur} [–]	E _x [m]	E _{ur} [–]	E _x [m]
Res=20m	0.25	0.51 D	0.26	0.33 D
Res=30m	0.19	0.50 D	0.21	0.41 D
Res=40m	0.19	0.47 D	0.22	0.34 D
Res=60m	0.25	0.49D	0.21	0.45 D
Res=70m	0.27	0.61 D	0.23	0.58 D

TUDelft

Conclusions

- Developed a synthetic lidar model & wake detection algorithm
- Quantified accuracy of 10 geometries using the same LES wind field to get unbiased error estimation
- A trade-off between spatial and temporal resolution is a key component of accuracy for a scan geometry
- Have shown that the choice for 'true' LES field is not trivial, and requires further knowledge of wake time scales

Future Work

- Improve wake detection/characterization method
 - More sophisticated definition of wake center, based on velocity deficit distribution
- Vary more geometrical parameters, e.g. different scan paths
- Enhance the LES model

Add stability effects, study relation to geometrical parameters

Thank you!

Questions and comments

TUDelft

Appendix

Synth. Lidar scan, Corresponding to 1st Inst. LES field in Slide 21

Figure 29: Turbine axis aligned four hour ensemble-averaged u with interpolation plane locations (only every other plane is shown)

Figure 52: LES velocity field time-averaged over T_{LES} . Black circle: turbine rotor y - z position. Red 'X': location of maximum velocity deficit.

Synthetic Scans

Figure 53: Procedure for field averaging, wake detection, and wake metric calculation