Wake detection in the turbine inflow using nacelle lidars

Dominique P Held^{1,2} Nikolaos Kouris² Antoine Larvol² Jakob Mann¹

 (1) Department of Wind Energy, Danish Technical University (DTU) Frederiksborgvej 399, 4000 Roskilde, Denmark
(2) Windar Photonics A/S, Helgeshøj Alle 16-18, 2630 Taastrup, Denmark

Correspondence: domhel@dtu.dk

DTU Wind Energy Department of Wind Energy Wind Energy Denmark 2018 30 – 31 October Hedensted, Danmark

Table of Contents

- **1.** Introduction
- 2. Measuring with Nacelle Lidars
- 3. Motivation
- 4. Methodology
- 5. Results
- 6. Conclusion

Introduction

- Remote sensing allows for novel measurement strategies
 - Wide range of applications are possible
- Nacelle lidar systems allow remote sensing of turbine inflows
- Nacelle lidar potential:
 - Power curve validation
 - Control integration

→However new challenges arise with new sensors

Illustrations by Mitsubishi Electric: http://www.mitsubishielectric.com/bu/lidar/lidar/applicatio ns/apps_01.html (Last accessed on 2018-09-10)

Measuring Inflow with Nacelle Lidars

- Use of Optical Doppler effect
- Frequency shift in backscattered light is proportional to aerosol movement
- Coherent detection using a CW laser – Analysis of the Doppler spectrum

Important measurement differences compared to cup or sonic anemometers:

- > Volume measurement \rightarrow Low-pass filter effect
- Measurement of line-of-sight (LOS) component

Measuring Inflow Characteristics

- Assumptions of wind field are necessary due to limitation to radial wind speeds
- Horizontal homogeneity is used by nacelle lidars (and many other lidar systems)

Motivation

- Assumptions of wind field are necessary due to limitation to radial wind speeds
- Horizontal homogeneity is used by nacelle lidars (and many other lidar systems)
 - Problems arise when the flow violates assumptions

Influence has been tested at DTU's Risø test site in a 1month long experiment

Wake Detection - Methodology

Т

- 1. Wakes create turbulence with a much smaller length scale than ambient flows¹
- 2. Small-scale turbulence is filtered by the lidar system due to large probe volume
 - → attenuated turbulence widens the Doppler spectrum

By comparing Doppler spectral widths, the increased small-scale turbulence inside a wake can be detected.

$$I_{LOS} = \frac{\sigma_{LOS}}{v_{LOS}} \qquad \sigma_{LOS}^2 = \frac{\int (v - v_{LOS})^2 W(v) dv}{\int W(v) dv}$$
$$\Delta T I_{LOS} = T I_{LOS,1} - T I_{LOS,2}$$
$$\sigma_{LOS}^2 \quad : \text{Doppler peak variance } [m^2/s^2]$$
$$v_{LOS} \quad : \text{ radial speed measurement } [m/s]$$

W(v) : lidar Doppler spectrum

Wake detection in the turbine inflow using nacelle lidars

¹ G. C. Larsen, K. S. Hansen, J. Mann, K. Enevoldsen and F. Bingöl, "Full scale measurements of wind turbine wake turbulence," in *The Science of Making Torque from Wind*, Heraklion, Greece, 2010.

Site Setup

- 8x 2.75 MW turbines in Western Denmark
- 1 turbine equipped with Windar Photonics lidar
- Turbine spacing: 250m (≈3D) - 560m (≈7D)
 - Here 5 closest turbines are considered
- Measurements between Nov 2014 and Mar 2015

 Detection algorithm uses LOS turbulence intensity

$$\mathrm{TI}_{\mathrm{LOS}} = \frac{\sigma_{\mathrm{LOS}}}{v_{\mathrm{LOS}}}$$

 \bullet Turbine mean misalignment leads to lower $v_{\rm LOS}$ for beam 1

 \rightarrow higher TI_{LOS} for beam 1

- Higher LOS TI when wake situation are expected
- Difference between beam 1 and 2 \rightarrow caused by half-wake situations

13 DTU Wind Energy, Technical University of Denmark

11 June 2018

Conclusion

- By comparing spectral width at different positions wake detection in inflow is possible
- Detection results can be used for
 - Correcting misalignment measurements
 - Reducing loads by yawing downstream turbines
 - Maximizing wind farm power production through wake steering or turbine derating
- Future Work includes:
 - Testing in complex terrain
 - Further refinement of algorithm

For further question:

Email domhel@dtu.dk

Wake detection in the turbine inflow

using nacelle lidars

Thank you for your attention!