Super ensembles for wind climate assessment

Andrea N. Hahmann (<u>ahah@dtu.dk</u>) and Tija Sile (Univ. of Latvia) DTU Department of Wind Energy, Risø Campus

and the New European Wind Atlas (NEWA) – WP3 Mesoscale Björn Witha¹, Martin Dörenkämper², Elena García-Bustamante³, Fidel González Rouco³, Jorge Navarro⁴, Yasemin Ezber⁵, and Mariano Sastre³

¹Forwind, Univ. Oldenburg, Germany. ²IWES, Fraunhofer, Germany. ⁴ J_a C ³Universidad Computense de Madrid, Spain. ⁴Renewable Energy Division, CIEMAT Spain. ⁵Istanbul Technical University, Turkey.

DTU Wind Energy Department of Wind Energy

The New European Wind Atlas (NEWA) project

Objectives:

- Accurate mapping of wind conditions for the estimation of wind resources and loads
- ➤ Development and testing of the "modelchain" (global → mesoscale → microscale)
- A series of field atmospheric experiments to validate the models and the final atlas

http://www.neweuropeanwindatlas.eu

Mesoscale modelling in NEWA

As part of NEWA, mesoscale model simulations are planned to:

- Mesoscale simulations for the wind atlas covering all Europe for 30 years (1998-2017)
- Ensemble of mesoscale simulations to:
 - Find the best WRF setup for the production run
 - Try to quantify uncertainty in the wind atlas resulting from the choices made in the model setup.

- First set of simulations concentrated on:
 - Size and position of the domain(s) → smaller domains are most accurate
 - ➤ Are model sensitivities specific to various regions of Europe → sensitivity to PBL appear unsensitive to region

0.9

0.8

0.6 0.5

0.4 0.3 0.2

0.1

-0.1 -0.2

-0.3 -0.4

-0.5 -0.6

-0.7 -0.8 -0.9 -1

A. Hanmann

Various setups of the ensemble members

PBL schemes	Surface layer scheme	Land surface model		Forcing reanalys	Sea surface temperature							Su ro lei	ırf ug ng	ace Jhne th	SS						
MYNN	MYNN	NOAH		ERA5		OSTIA							NEWA					BAS	E run		
YSU	мо	RUC	A Experi nt type	B C Nickname	Ensemble Member/N	D lame	WRF versio	setup +	st DTU o	to MN4 II	tted by -	npleted -	ed) sferred ~	leaned M	N Forcing (E: ERA5,	O SST/sea -ice (S:	P Surface roughness (1:	Q Land IC (E: ERA5, I:ERA-Interim	R Land surface model (WRF	S PBL/surfa ce layer	T surface layer (WRF
MYJ	MM5	PX LSM					V3.6.1, 8:V3.8. 1)		te	submitted	Submi	N4 run con s complete	st-process Data tran:	Run c	im, M:MERRA2 , C:CFSR2, F:FNL)	H: HRSST, O: OISST)	annual cycle, 3: aggregated, 4: agg+mod table)	G: GLDAS, M:MERRA2, C:CFSR2, F:FNL)	notationy	notation)	notation)
ACM2	Plein-Xue	SLAB						823	871			All file	8	87	CDAG	00714		5045	NOALI	Logan	
		NOAH-MP		0 base 1 xw_36_yw_36 2 large_relax	EES81_25 EES81_25 EES81_25	51040004 51040004_A 51040004_B	3.8.1 3.8.1 3.8.1				EG C				ERA5 ERA5 ERA5	OSTIA OSTIA OSTIA	constant Z0 constant Z0 constant Z0	ERA5 ERA5 ERA5	NOAH NOAH NOAH	MYNN* MYNN*	MYNN* MYNN*
		3 2-way-nest 4 grid-nudging-D3 5 grid-nudging-D1 6 spec-nudging-D3 7 ERAI 8 MERRA2 9 CFSR 10 arr	way-nest EES81_255 rid-nudging-D3 EES81_255 pec-nudging-D3 EES81_255 RAI IIS81_255 ERRA2 MMS81_255 FSR CCS81_255 FSR CCS81_255	51040004_C 51040004_H 51040004_I 51040004_J	3.8.1 3.8.1 3.8.1 3.8.1				EG BW BW BW				ERA5 ERA5 ERA5 ERA5	OSTIA OSTIA OSTIA OSTIA	constant Z0 constant Z0 constant Z0 constant Z0	ERA5 ERA5 ERA5 ERA5 ERA1 MERRA2 CFSR	NOAH NOAH NOAH NOAH NOAH NOAH	MYNN* MYNN* MYNN* MYNN*	MYNN* MYNN* MYNN*		
Multi-parameter combinations				beriments	51040004 51040004 51040004	3.8.1 3.8.1 3.8.1				ND ND H/FG [AH				ERAI MERRA2 CFSR FNL	OSTIA OSTIA OSTIA OSTIA			constant Z0 constant Z0 constant Z0 constant Z0	MYNN* MYNN* MYNN*	MYNN* MYNN* MYNN*	
Not all planne				11 Vers-361 12 MYNN-unmod 13 GLDAS	EES61_25 EES81_25 EGS81_25	50040004 50040004 51040004	3.6.1 3.8.1 3.8.1				BW BW				ERA5 ERA5 ERA5	OSTIA OSTIA OSTIA	constant Z0 constant Z0 constant Z0	ERA5 ERA5 GLDAS	NOAH NOAH NOAH	MYNN MYNN MYNN*	MYNN MYNN MYNN*
	Sen	14 20-cycle EES82 15 20-cycle-NCAR EES82 16 20-aggr EES83	EES82_25 EES82_25 EES83_25	51040004 51040004_A 51040004	3.8.1 3.8.1 3.8.1	$\langle \langle \langle \rangle \rangle$			AH AH AH				ERA5 ERA5 ERA5	OSTIA OSTIA OSTIA	annual cycle Z0 annual cycle Z0 aggregated Z0	ERA5 ERA5 ERA5	NOAH NOAH NOAH	MYNN* MYNN* MYNN*	MYNN* MYNN* MYNN*		
			17 Z0-aggr-COR 18 HRSST 19 OISST 20 SST EPA5	EES84_25 EEH81_25 EEO81_25	3.8 551040004 3.8 551040004 3.8 551040004 3.8	3.8.1 3.8.1 3.8.1				(H) (E) (E)				ERA5 ERA5 ERA5	OSTIA HRSST OISST	gregated Z0 (con constant Z0 constant Z0	ERA5 ERA5 ERA5	NOAH NOAH NOAH	MYNN* MYNN* MYNN*	MYNN* MYNN* MYNN*	
4 DTU Wi	nd Energy, Technical Ur	niversity of Denmar	rl	20 SSI_ERAS 21 radt_3 22 radt 12	EES81_25 EES81_25	51040004_D	3.8.1 3.8.1 3.8.1				BW				ERA5 ERA5	OSTIA	constant 20 constant Z0 constant Z0	ERA5 ERA5	NOAH	MYNN* MYNN*	MYNN*

ANNUAL MEAN WIND SPEED (15 ensemble members)

RMSE compared to that of BASE

Validation against observations Ratio of RMSE compared to that of BASE

One full year (2015) of simulation

Comparison against observations for 8 sites offshore or over simple terrain

Annual average wind speed, m/s at 100.0m

6

How to select x ensemble members that give the (best) maximum spread?

- Goal: Reduce the number of ensemble members, by throwing out those that are not very different from the base run, but still give reasonable statistics when compared to observations
- Method: hierarchical/agglomerative clustering, on mean annual wind speed at 100 m height
- Other metrics, e.g. Chi-square, EMD (Earth Mover Distance) are also being considered.

Ensemble spread

Standard deviation (m/s) of the annual mean wind speed at 100m using 5 ensemble members

Interesting patterns

- Low spread <u>not</u> collocated with water
- High spread <u>not</u> collocated with high roughness (forest)
- Can this tell us anything about the uncertainty of the wind atlas?
- At least, areas of more or less confidence in the resulting wind atlas
- More high-quality observations could help clarify any additional value

The production run

NEWA WRF configuration												
	27 km x 27 km common outer grid, 9 km x 9 km and final 3 km x 3 km	ERA5 reanalysis OSTIA SST	CORINE land surface Adapted roughness table	Weekly simulations overlapping by 24 hours								
	MYNN PBL scheme MO surface layer NOAH LSM	Ten domains run separately	Spectral grid nudging in outer domain only above PBL	One way nesting								

Granted 56,70 million core hours on MareNostrum4 (Barcelona Supercomputer Center)

Production run is underway

YEAR

region/ year	2018	2017	2016	2015	2014	2013	2012	2011	2010	2009	2008	2007	2006	2005	2004	2003	2002	2001	2000	1999	1998	1997	1996	1995	1994	1993	1992	1991	1990	1989	1988
BA		BW	BW	JB	JB	TS	WT	WT	AH	во	AH	MD	YE	MD	MS																
CE		BW	AH	JB	JB	TS	WT	WT	AH	BO	AH	BW	YE	MS	MS																
FR		BW	AH	JB	JB	TS	BW	WT	AH	EG	AH	MD	YE	MS	MS																
GB		BW	BW	JB	JB	TS	TS	WT	AH	EG	AH	MD	YE	MS	MS																
GR		BW	BW	BW	JB	BW	TS	WT	AH	EG	YE	MD	YE	MS	MS																
IB		BW	JB	BW	JB	TS	TS	WT	AH	EG	YE	MD	YE	MS	MS																
IT		BW	TS	BW	TS	BW	WT	WT	AH	EG	YE	MD	YE	MS	MS																
SA		BW	JB	JB	TS	TS	BW	WT	AH	EG	YE	MD	YE	MS	JN																
SB		BW	JB	JB	TS	TS	WT	WT	AH	EG	YE	MD	YE	MS	JN																
TR		BW	JB	JB	TS	TS	WT	AH	BO	EG	YE	MD	YE	MS																	
			Tranfe	er by h	and; no	o remo	ve																								
			Run c	omple	ted and	d data i	transfe	rred													ERA5	data r	not yet	availat	ble						
			Job s	ubmitte	ed; runi	ning or	waitin	g to ru	n																						
			Run completed; waiting postprocess																												
			Main run done; some weeks failed; wai Run completed; transfer initiated							run																					
			WPS	done,	WRF fa	ailed/w	as can	celed																							

Annual mean wind speed (m/s) at 100 m 2013-2017

DTU

Increases in GHGs are expected to lead to:

- poleward shift of the jet streams and associated zonal mean storm tracks
- a poleward shift of the Hadley Circulation

IPCC 5th Assessment report

ARTICLES https://doi.org/10.1038/s41561-017-0029-9

nature geoscience

What can be wrong with the previous type of assessment?

- Are wind farms at 10m?
- Do wind farms spin with the wind speed of a 50 km x 50 km wind speed?
- Why did they select some models are not others?
- What is missing?
- Future climate wind atlas?
- How do we consider the multimodels and ensemble information?

